首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
To better clarify the physical properties for Al3RE precipitates, first-principles calculations are performed to investigate the vibrational, anisotropic elastic and thermodynamic properties of Al3Er and Al3Yb. The calculated results agree well with available experimental and theoretical ones. The vibrational properties indicate that Al3Er and Al3Yb will keep their dynamical stabilities with L12 structure up to 100 GPa. The elastic constants are satisfied with mechanical stability criteria up to the external pressure of 100 GPa. The mechanical anisotropy is predicted by anisotropic constants AG, AU, AZ and 3D curved surface of Young’s modulus. The calculated results show that both Al3Er and Al3Yb are isotropic at zero pressure and obviously anisotropic under high pressure. Further, we systematically investigate the thermodynamic properties and provide the relationships between thermal parameters and pressure. Finally, the pressure-dependent behaviours of density of states, Mulliken charge and bond length are discussed.  相似文献   

2.
First principles calculations were used to explore the structural stability, mechanical properties, and thermodynamic properties of LaT_2 Al_(20)(T = Ti, V, Cr, Nb, and Ta) intermetallics. The calculated formation enthalpy and phonon frequencies indicate that LaT_2Al_(20) intermetallics exhibit the structural stability. The elastic moduli(B, G, E, and Hv) indicate that these intermetallics possess the better elastic properties than pure Al. The values of Poisson's ratio v and B/G demonstrate that LaT_2Al_(20) intermetallics are all brittle materials. The anisotropy of elasticity and Young's modulus(three-and two-dimensional figures) indicate that LaT_2Al_(20) compounds are anisotropic. Importantly, the calculated thermal quantities demonstrate that LaT_2Al_(20) intermetallics possess the better thermal physical properties than pure Al at high temperatures.  相似文献   

3.
本文利用密度泛函理论中的广义梯度近似对碳化钨晶体的三种结构(碳化钨相、闪锌矿相以及纤锌矿相)进行了优化,得到能量最低的稳定构型,并在此基础上计算了它的力学、电子、光学和高温高压下的热力学性质.研究表明:在0~300 GPa压力范围内,碳化钨相具有最高的稳定性.同时,高压下碳化钨相的弹性常数满足Born-Huang准则,且0 GPa和300 GPa下的声子色散没有虚频,证明了高压下碳化钨相的静力学稳定性和动力学稳定性.电子性质表明了碳化钨的金属性.光学性质表明碳化钨在高能区很难吸收光.热力学性质的研究表明:体积比V/V_0对压强的变化更敏感;高温时C_V曲线近似一条直线;给定压强下热膨胀系数α在600 K温度以上增长非常缓慢;压强对德拜温度Θ_D的影响较大;在低压下格林艾森系数γ的变化较大.  相似文献   

4.
翟红村  李晓凤  杜军毅  姬广富 《中国物理 B》2012,21(5):57102-057102
The mechanical stability,elastic,and thermodynamic properties of the anti-perovskite superconductors MNNi 3(M=Zn,Mg,Al) are investigated by means of the first-principles calculations.The calculated structural parameters and elastic properties of MNNi 3 are in good agreement with the experimental and the other theoretical results.From the elastic constants under high pressure,we predict that ZnNNi 3,MgNNi 3,and AlNNi 3 are not stable at the pressures above 61.2 GPa,113.3 GPa,and 122.4 GPa,respectively.By employing the Debye model,the thermodynamic properties,such as the heat capacity and the thermal expansion coefficient,under pressures and at finite temperatures are also obtained successfully.  相似文献   

5.
The mechanical stability,elastic,and thermodynamic properties of the anti-perovskite superconductors MNNi 3(M=Zn,Mg,Al) are investigated by means of the first-principles calculations.The calculated structural parameters and elastic properties of MNNi 3 are in good agreement with the experimental and the other theoretical results.From the elastic constants under high pressure,we predict that ZnNNi 3,MgNNi 3,and AlNNi 3 are not stable at the pressures above 61.2 GPa,113.3 GPa,and 122.4 GPa,respectively.By employing the Debye model,the thermodynamic properties,such as the heat capacity and the thermal expansion coefficient,under pressures and at finite temperatures are also obtained successfully.  相似文献   

6.
The pressure-dependence of mechanical, electronic and thermodynamic properties of metastable (L12 type) and stable (D023 type) Al3Zr precipitations in Al–Li alloys were investigated by employing the first-principle calculations. The calculated equilibrium parameters are in good agreement with experimental and previous calculation results available. Elastic properties including bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio and universal anisotropic index are determined by Voigt–Reuss–Hill approximation. It is found that for both phases, external pressure can improve the mechanical stability, ductility and plasticity. The electronic structures are determined to reveal the bonding characteristics of both phases. In addition, both phonon method and Gibbs program have been proposed to predict thermodynamic properties of two phases. All of these results can help to have a better understanding of the physical and chemical properties of Al3Zr precipitations in Al–Li alloy. And can offer theoretical guidance for the weight lighting, energy conservation and emissions reduction in the design of new aluminium alloys.  相似文献   

7.
The structural parameters, mechanical, electronic and thermodynamic properties of TE-C36 under high pressure were calculated via the density functional theory in combination with the quasi-harmonic Debye model. The results show that the pressure has significant effects on the equilibrium structure parameters, mechanical, electronic and thermodynamic properties of TE-C36. The obtained ground state structural parameters are in good agreement with previous theoretical results. The mechanically and dynamically stable under pressure were confirmed by the calculated elastic constants and phonon dispersion spectra. The elastic constants, elastic modulus, B/G ratio, Poisson’s ratio and Vicker’s hardness were determined in the pressure range of 0–100?GPa. The elastic anisotropy of TE-C36 under pressure are also determined in detail. The electronic structure calculations reveal that TE-C36 remains a direct band gap semiconductor when the pressure changes from 0 to 100?GPa, and the band gap decreases with increasing pressure. Furthermore, the pressure and temperature dependence of thermal expansion coefficient, heat capacity and Debye temperature are predicted in a wide pressure (0–90?GPa) and temperature (0–2500?K) ranges. The obtained results are expected to provide helpful guidance for the future synthesis and application of TE-C36.  相似文献   

8.
刘显坤  郑洲  兰晓华  刘聪 《计算物理》2013,30(2):256-264
采用基于密度泛函理论的第一性原理平面波赝势方法研究ZrV2的晶体结构和弹性,利用准谐Debye模型计算在不同温度(T=0~1200 K)和不同压强(P=0~20 GPa)下ZrV2的热力学性质,包括弹性模量与压强,热熔与温度,以及热膨胀系数与温度和压力的关系.结果表明:计算的ZrV2晶格常数与实验值符合较好,晶体材料的弹性常数随着压力增加而增加;在一定温度下,相对体积、热熔随着压强的增加而减小,德拜温度、弹性模量随着压强的增加而增加,且高压下温度对ZrV2热膨胀系数的影响小于压强的影响.  相似文献   

9.
范航  聂福德  龙瑶  陈军 《物理学报》2016,65(6):66201-066201
热力学性质是钝感高能炸药1, 3, 5-三氨基-2, 4, 6-三硝基苯(TATB)爆轰性质和安全性评估分析的重要参数. 由于结构的复杂性, TATB炸药尚缺乏系统的实验和理论计算结果. 结合全原子力场和分子动力学的方法, 本文系统研究了不同温度和压力条件下TATB的力学性质和热力学参数, 得到了弹性模量、德拜温度等随温度、压力的变化情况, 并与实验进行了对比分析. 结果表明: 在 0-50 GPa外部压力下, TATB晶体保持力学稳定, 弹性常数和弹性模量随压力升高而增大, 各向异性程度随压力升高而减小, 泊松比和延展性则受压力的影响较小; 随温度的升高, TATB的力学稳定性逐渐下降, 有发生力学失稳的可能, 各弹性常数随温度升高而逐渐减小, 各向异性程度也随之减小; TATB 的声速和德拜温度同样随着压力升高而增大, 平均声速从0 GPa下的1833 m/s, 增加到10 GPa 下的3143 m/s, 德拜温度由0 GPa下的254 K增加到10 GPa的587 K. TATB 热膨胀系数的计算表明, 在200-500 K 温度常压情况下, 其体热膨胀系数为35.9×10-5 K-1, 与实验数据符合较好.  相似文献   

10.
 使用Bundy和Dunn发展起来的带有烧结金刚石砧的Drickamer型高压装置,用固定点测压法标定实验压力,在室温及0~43 GPa的压力范围内测量了稀土金属中Pr、Nd、Sm、Gd、Tb、Dy、Ho、Tm、Lu和Yb的电阻随压力的变化。在各稀土元素的电阻随压力变化的曲线上,观测到了若干“凸起”和斜率突变点,根据Jayaraman提出的三价稀土在压力作用下的相变顺序,得到了这些突(凸)变点分别对应着hcp→Sm-type→dhcp→fcc相变顺序中的某一类型的相变压力。此外还观测到了Pr、Gd、Tb的fcc相随着压力再增高而发生的相变,根据已报导的关于Pr的工作,推测Gd和Tb的这一相变应为fcc→dfcc相变,它们分别发生在22.0和24.5 GPa。在本工作所得结果基础上对Johansson的三价稀土总相图进行了修正。  相似文献   

11.
Using a pseudopotential plane-waves method,we calculate the phonon dispersion curves,thermodynamic properties,and hardness values of α-CdP_2 and β-CdP_2 under high pressure.From the studies of the phonon property and enthalpy difference curves,we discuss a phase transform from β-CdP_2 to a-CdP_2 in a pressure range between 20 GPa and 25 GPa.Then,the thermodynamic properties,Debye temperatures,and heat capacities are investigated at high pressures.What is more,we employ a semiempirical method to evaluate the pressure effects on the hardness for these two crystals.The results show that the hardness values of both α-CdP_2 and β-CdP_2 increase as pressure is increased.The influence mechanism of the pressure effect on the hardness of CdP_2 is also briefly discussed.  相似文献   

12.
Jing Chang  NiNa Ge  Ke Liu 《哲学杂志》2013,93(25):2182-2195
Abstract

A theoretical investigations on the structural stability and mechanical properties of Be3N2 crystallising in α and β phases was performed using first-principles calculations based on density functional theory. The obtained ground state structure and mechanical properties are in excellent agreement with the available experimental and theoretical data. A full elastic tensor and crystal anisotropy of Be3N2 in two phases are determined in the wide pressure range. Results indicated that the two phases of Be3N2 are mechanically stable and strongly pressure dependent in the range of pressure from 0 to 80 GPa. The superior mechanical properties show that the two phases of Be3N2 are potential candidate structures to be the hard material. And the α-Be3N2 has better mechanical properties than β-Be3N2. By the calculated B/G ratio, it is predicted that both phases are intrinsically brittleness and strongly prone to ductility when the pressure is above 65.6 and 68.5 GPa, respectively. Additionally, the pressure-induced elastic anisotropy analysis indicates that the elastically anisotropic of Be3N2 in both phases is strengthening with increasing pressure, and strongly dependent on the propagation direction.  相似文献   

13.
Zirconia (ZrO2), yttria (Y2O3) and thorite (ThSiO4) are ceramic materials used for a wide range of industrial applications. The dynamical properties of these materials are of interest as they exhibit numerous interesting phase transitions at high temperature and pressure. Using a combination of inelastic neutron scattering and theoretical lattice dynamics we have studied the phonon spectra and thermodynamic properties of these compounds. The experimental data validate the theoretical model, while the model enables microscopic interpretations of the observed data. The calculated thermodynamic properties are in good agreement with the experimental data.   相似文献   

14.
We investigate the elastic properties, lattice dynamical, thermal equation of state and thermodynamic properties of bcc phase W under high pressure using density functional theory. The calculated high-pressure elastic constants of bcc phase W agree well with experimental and theoretical data. Under compression, the phonon dispersion curves of bcc phase W do not show any anomaly or instability. Our calculated zero-pressure phonon dispersion curves are in excellent agreement with experiments. Within the quasiharmonic approximation, we predict the thermal equation of state and other properties including the thermal expansion coefficient, adiabatic bulk modulus, specific heat at constant volume and entropy.  相似文献   

15.
H.Y. Wu  Y.H. Chen  C.R. Deng  X.Y. Han  P.F. Yin 《哲学杂志》2015,95(21):2240-2256
The electronic, elastic and dynamical properties of MgSe in the rocksalt (B1) and iron silicide (B28) phase and the effects of pressure on these properties are investigated using first-principles method. The calculated electronic band structure indicates that the B1 phase of MgSe presents an indirect band-gap feature and the band gaps initially increase with pressure and subsequently decrease upon compression. Remarkably, an indirect-to-direct band-gap transition has been observed at the phase transition pressure. The elastic constants, bulk modulus, shear modulus, Young’s modulus, elastic anisotropy and B/G ratio of MgSe in the B1 and B28 phase at high pressure have also been investigated. The bulk modulus, shear modulus and Young’s modulus all increase monotonously with the increasing of pressure for the B1 and B28 phase of MgSe. The calculated phonon frequencies of the B1 phase at zero pressure agree well with available theoretical results. And the transverse acoustic phonon TA(X) mode of this phase completely softening to zero at 82 GPa. The phonon curves of the B28 phase under pressure have also been successfully investigated.  相似文献   

16.
Recently for the first time, a stable compound of He and Na (Na2He) is predicted at high pressure. We explore the pressure-dependent elastic, mechanical and thermodynamic properties of this newly discovered Na2He by using ab initio technique. The calculation presents good accordance between the theoretical and experimental lattice parameters. Though the most stable structure of Na2He is found at 300?GPa, present study ensures the mechanical stability of this compound up to 500?GPa. The study of Cauchy pressure, Pugh's ratio, and Poisson's ratio implies the ductile manner of Na2He up to 500?GPa. According to the value of Poisson's ratio the bonding force exists in Na2He is central. The study of Zener anisotropy factor indicates that Na2He is an anisotropic material but near at 300?GPa approximately isotropic nature of Na2He is revealed. The study of the bulk modulus, shear modulus, Young's modulus and Vickers hardness implies that the hardness of Na2He can be improved by applying external pressure. However, the Debye temperature, melting temperature and minimum thermal conductivity of Na2He are also calculated and discussed at different pressures.  相似文献   

17.
利用第一性原理平面波赝势密度泛函理论, 并结合准谐德拜模型, 计算了立方萤石结构ErH2在不同温度和压强下的体积、热膨胀系数、体弹模量和等体热容等弹性性质及热力学性质。在温度高于1 100 K的条件下,计算出的等体热容趋近于Dulong-Petit极限。得到了绝对零度、零压强下ErH2的该结构的晶格常数为0.523 2 nm,与实验值0.523 0 nm非常接近。由不同的原胞体积得出了该体系的单点能与原胞体积的关系的数据;从计算出的高压下的弹性常数,根据立方晶系的力学稳定性条件,推断出立方萤石结构ErH2的相变压力约为20 GPa。  相似文献   

18.
<正>The elastic and thermodynamic properties of NbN at high pressures and high temperatures are investigated by the plane-wave pseudopotential density functional theory(DFT).The generalized gradient approximation(GGA) with the Perdew-Burke-Ernzerhof(PBE) method is used to describe the exchange-correlation energy in the present work.The calculated equilibrium lattice constant a0,bulk modulus B0,and the pressure derivative of bulk modulus B0’ of NbN with rocksalt structure are in good agreement with numerous experimental and theoretical data.The elastic properties over a range of pressures from 0 to 80.4 GPa are obtained.Isotropic wave velocities and anisotropic elasticity of NbN are studied in detail.It is indicated that NbN is highly anisotropic in both longitudinal and shear-wave velocities. According to the quasi-harmonic Debye model,in which the phononic effect is considered,the relations of(V-V0)/V0 to the temperature and the pressure,and the relations of the heat capacity CV and the thermal expansion coefficientαto temperature are discussed in a pressure range from 0 to 80.4 GPa and a temperature range from 0 to 2500 K.At low temperature,CV is proportional to T3 and tends to the Dulong-Petit limit at higher temperature.We predict that the thermal expansion coefficientαof NbN is about 4.20×10-6/K at 300 K and 0 GPa.  相似文献   

19.
The structural parameters, elastic constants, thermodynamic properties of Imm2-BN under high pressure were calculated via the density functional theory in combination with quasi-harmonic Debye approach. The results showed that the pressure has the significant effect on the equilibrium lattice parameters, elastic and thermodynamic properties of Imm2-BN. The obtained ground state structural parameters are in good agreement with previous theoretical results. The elastic constants, elastic modulus, and elastic anisotropy were determined in the pressure range of 0–90?GPa. Furthermore, by analyzing the B/G ratio, the brittle/ductile behavior under high pressure is evaluated and the elastic anisotropy of the Imm2-BN up to 90?GPa is studied in detail. Moreover, the pressure and temperature dependence of thermal expansion coefficient, heat capacity, Debye temperature, and Grüneisen parameter are predicted in a wide pressure (0–90?GPa) and temperature (0–1600?K) ranges. The obtained results are expected to provide helpful guidance for the future synthesis and application of Imm2-BN.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号