首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chunzao Wang 《中国物理 B》2022,31(4):47304-047304
A lateral insulated gate bipolar transistor (LIGBT) based on silicon-on-insulator (SOI) structure is proposed and investigated. This device features a compound dielectric buried layer (CDBL) and an assistant-depletion trench (ADT). The CDBL is employed to introduce two high electric field peaks that optimize the electric field distributions and that, under the same breakdown voltage (BV) condition, allow the CDBL to acquire a drift region of shorter length and a smaller number of stored carriers. Reducing their numbers helps in fast-switching. Furthermore, the ADT contributes to the rapid extraction of the stored carriers from the drift region as well as the formation of an additional heat-flow channel. The simulation results show that the BV of the proposed LIGBT is increased by 113% compared with the conventional SOI LIGBT of the same length LD. Contrastingly, the length of the drift region of the proposed device (11.2 μ) is about one third that of a traditional device (33 μ) with the same BV of 141 V. Therefore, the turn-off loss (EOFF) of the CDBL SOI LIGBT is decreased by 88.7% compared with a conventional SOI LIGBT when the forward voltage drop (VF) is 1.64 V. Moreover, the short-circuit failure time of the proposed device is 45% longer than that of the conventional SOI LIGBT. Therefor, the proposed CDBL SOI LIGBT exhibits a better VF-EOFF tradeoff and an improved short-circuit robustness.  相似文献   

2.
A novel silicon-on-insulator lateral insulated gate bipolar transistor(SOI LIGBT)is proposed in this paper.The proposed device has a P-type buried layer and a partial-SOI layer,which is called the BPSOI-LIGBT.Due to the electric field modulation effect generated by the P-type buried layer and the partial-SOI layer,the proposed structure generates two new peaks in the surface electric field distribution,which can achieve a smaller device size with a higher breakdown voltage.The smaller size of the device is beneficial to the fast switching.The simulation shows that under the same size,the breakdown voltage of the BPSOI LIGBT is 26%higher than that of the conventional partial-SOI LIGBT(PSOI LIGBT),and 84%higher than the traditional SOI LIGBT.When the forward voltage drop is 2.05 V,the turn-off time of the BPSOI LIGBT is 71%shorter than that of the traditional SOI LIGBT.Therefore,the proposed BPSOI LIGBT has a better forward voltage drop and turn-off time trade-off than the traditional SOI LIGBT.In addition,the BPSOI LIGBT effectively relieves the self-heating effect of the traditional SOI LIGBT.  相似文献   

3.
A high voltage( 600 V) integrable silicon-on-insulator(SOI) trench-type lateral insulated gate bipolar transistor(LIGBT) with a reduced cell-pitch is proposed.The LIGBT features multiple trenches(MTs):two oxide trenches in the drift region and a trench gate extended to the buried oxide(BOX).Firstly,the oxide trenches enhance electric field strength because of the lower permittivity of oxide than that of Si.Secondly,oxide trenches bring in multi-directional depletion,leading to a reshaped electric field distribution and an enhanced reduced-surface electric-field(RESURF) effect.Both increase the breakdown voltage(BV).Thirdly,oxide trenches fold the drift region around the oxide trenches,leading to a reduced cell-pitch.Finally,the oxide trenches enhance the conductivity modulation,resulting in a high electron/hole concentration in the drift region as well as a low forward voltage drop(Von).The oxide trenches cause a low anode-cathode capacitance,which increases the switching speed and reduces the turn-off energy loss(Eoff).The MT SOI LIGBT exhibits a BV of 603 V at a small cell-pitch of 24 μm,a Von of 1.03 V at 100 A/cm-2,a turn-off time of 250 ns and Eoff of 4.1×10?3 mJ.The trench gate extended to BOX synchronously acts as dielectric isolation between high voltage LIGBT and low voltage circuits,simplifying the fabrication processes.  相似文献   

4.
石艳梅  刘继芝  姚素英  丁燕红  张卫华  代红丽 《物理学报》2014,63(23):237305-237305
为了提高小尺寸绝缘体上硅(SOI)器件的击穿电压,同时降低器件比导通电阻,提出了一种具有L型源极场板的双槽SOI高压器件新结构.该结构具有如下特征:首先,采用了槽栅结构,使电流纵向传导面积加宽,降低了器件的比导通电阻;其次,在漂移区引入了Si O2槽型介质层,该介质层的高电场使器件的击穿电压显著提高;第三,在槽型介质层中引入了L型源极场板,该场板调制了漂移区电场,使优化漂移区掺杂浓度大幅增加,降低了器件的比导通电阻.二维数值仿真结果表明:与传统SOI结构相比,在相同器件尺寸时,新结构的击穿电压提高了151%,比导通电阻降低了20%;在相同击穿电压时,比导通电阻降低了80%.与相同器件尺寸的双槽SOI结构相比,新结构保持了双槽SOI结构的高击穿电压特性,同时,比导通电阻降低了26%.  相似文献   

5.
An ultra-low specific on-resistance trench gate vertical double-diffused metal-oxide semiconductor with a high-k dielectric-filled extended trench(HK TG VDMOS) is proposed in this paper.The HK TG VDMOS features a high-k(HK) trench below the trench gate.Firstly,the extended HK trench not only causes an assistant depletion of the n-drift region,but also optimizes the electric field,which therefore reduces Ron,sp and increases the breakdown voltage(BV).Secondly,the extended HK trench weakens the sensitivity of BV to the n-drift doping concentration.Thirdly,compared with the superjunction(SJ) vertical double-diffused metal-oxide semiconductor(VDMOS),the new device is simplified in fabrication by etching and filling the extended trench.The HK TG VDMOS with BV = 172 V and Ron,sp = 0.85 mΩ·cm2 is obtained by simulation;its Ron,sp is reduced by 67% and 40% and its BV is increased by about 15% and 5%,in comparison with those of the conventional trench gate VDMOS(TG VDMOS) and conventional superjunction trench gate VDMOS(SJ TG CDMOS).  相似文献   

6.
石艳梅  刘继芝  姚素英  丁燕红 《物理学报》2014,63(10):107302-107302
为降低绝缘体上硅(SOI)横向双扩散金属氧化物半导体(LDMOS)器件的导通电阻,同时提高器件击穿电压,提出了一种具有纵向漏极场板的低导通电阻槽栅槽漏SOI-LDMOS器件新结构.该结构特征为采用了槽栅槽漏结构,在纵向上扩展了电流传导区域,在横向上缩短了电流传导路径,降低了器件导通电阻;漏端采用了纵向漏极场板,该场板对漏端下方的电场进行了调制,从而减弱了漏极末端的高电场,提高了器件的击穿电压.利用二维数值仿真软件MEDICI对新结构与具有相同器件尺寸的传统SOI结构、槽栅SOI结构、槽栅槽漏SOI结构进行了比较.结果表明:在保证各自最高优值的条件下,与这三种结构相比,新结构的比导通电阻分别降低了53%,23%和提高了87%,击穿电压则分别提高了4%、降低了9%、提高了45%.比较四种结构的优值,具有纵向漏极场板的槽栅槽漏SOI结构优值最高,这表明在四种结构中新结构保持了较低导通电阻,同时又具有较高的击穿电压.  相似文献   

7.
A novel shorted anode lateral-insulated gate bipolar transistor(SA LIGBT)with snapback-free characteristic is proposed and investigated.The device features a controlled barrier Vbarrierand resistance RSAin anode,named CBR LIGBT.The electron barrier is formed by the P-float/N-buffer junction,while the anode resistance includes the polysilicon layer and N-float.At forward conduction stage,the Vbarrierand RSAcan be increased by adjusting the doping of the P-float and polysilicon layer,respectively,which can suppress the unipolar mode to eliminate the snapback.At turn-off stage,the low-resistance extraction path(N-buffer/P-float/polysilicon layer/N-float)can quickly extract the electrons in the N-drift,which can effectively accelerate the turn-off speed of the device.The simulation results show that at the same Von of 1.3 V,the Eoffof the CBR LIGBT is reduced by 85%,73%,and 59.6%compared with the SSA LIGBT,conventional LIGBT,and TSA LIGBT,respectively.Additionally,at the same Eoffof 1.5 m J/cm2,the CBR LIGBT achieves the lowest Von of 1.1 V compared with the other LIGBTs.  相似文献   

8.
研究了高k栅介质对肖特基源漏超薄体SOI MOSFET性能的影响.随着栅介质介电常数增大,肖特基源漏(SBSD) SOI MOSFET的开态电流减小,这表明边缘感应势垒降低效应(FIBL)并不是对势垒产生影响的主要机理.源端附近边缘感应势垒屏蔽效应(FIBS)是SBSD SOI MOSFET开态电流减小的主要原因.同时还发现,源漏与栅是否对准,高k栅介质对器件性能的影响也不相同.如果源漏与栅交叠,高k栅介质与硅衬底之间加入过渡层可以有效地抑制FIBS效应.如果源漏偏离栅,采用高k侧墙并结合堆叠栅结构,可以提高驱动电流.分析结果表明,来自栅极的电力线在介电常数不同的材料界面发生两次折射.根据结构参数的不同可以调节电力线的疏密,从而达到改变势垒高度,调节驱动电流的目的. 关键词: k栅介质')" href="#">高k栅介质 肖特基源漏(SBSD) 边缘感应势垒屏蔽(FIBS) 绝缘衬底上的硅(SOI)  相似文献   

9.
A new silicon-on-insulator(SOI) trench lateral double-diffused metal oxide semiconductor(LDMOS) with a reduced specific on-resistance R_(on),sp is presented. The structure features a non-depleted embedded p-type island(EP) and dual vertical trench gate(DG)(EP-DG SOI). First, the optimized doping concentration of drift region is increased due to the assisted depletion effect of EP. Secondly, the dual conduction channel is provided by the DG when the EP-DG SOI is in the on-state. The increased optimized doping concentration of the drift region and the dual conduction channel result in a dramatic reduction in R_(on),sp. The mechanism of the EP is analyzed,and the characteristics of R_(on),sp and breakdown voltage(BV) are discussed. Compared with conventional trench gate SOI LDMOS, the EP-DG SOI decreases R_(on),sp by 47.1% and increases BV from 196 V to 212 V at the same cell pitch by simulation.  相似文献   

10.
罗小蓉  姚国亮  陈曦  王琦  葛瑞  Florin Udrea 《中国物理 B》2011,20(2):28501-028501
A low specific on-resistance (R S,on) silicon-on-insulator (SOI) trench MOSFET (metal-oxide-semiconductor-field-effect-transistor) with a reduced cell pitch is proposed.The lateral MOSFET features multiple trenches:two oxide trenches in the drift region and a trench gate extended to the buried oxide (BOX) (SOI MT MOSFET).Firstly,the oxide trenches increase the average electric field strength along the x direction due to lower permittivity of oxide compared with that of Si;secondly,the oxide trenches cause multiple-directional depletion,which improves the electric field distribution and enhances the reduced surface field (RESURF) effect in the SOI layer.Both of them result in a high breakdown voltage (BV).Thirdly,the oxide trenches cause the drift region to be folded in the vertical direction,leading to a shortened cell pitch and a reduced R S,on.Fourthly,the trench gate extended to the BOX further reduces R S,on,owing to the electron accumulation layer.The BV of the MT MOSFET increases from 309 V for a conventional SOI lateral double diffused metal-oxide semiconductor (LDMOS) to 632 V at the same half cell pitch of 21.5 μm,and R S,on decreases from 419 m · cm 2 to 36.6 m · cm 2.The proposed structure can also help to dramatically reduce the cell pitch at the same breakdown voltage.  相似文献   

11.
辛艳辉  刘红侠  范小娇  卓青青 《物理学报》2013,62(15):158502-158502
为了进一步提高深亚微米SOI (Silicon-On-Insulator) MOSFET (Metal-Oxide Semiconductor Field Effect Transistor) 的电流驱动能力, 抑制短沟道效应和漏致势垒降低效应, 提出了非对称Halo异质栅应变Si SOI MOSFET. 在沟道源端一侧引入高掺杂Halo结构, 栅极由不同功函数的两种材料组成. 考虑新器件结构特点和应变的影响, 修正了平带电压和内建电势. 为新结构器件建立了全耗尽条件下的表面势和阈值电压二维解析模型. 模型详细分析了应变对表面势、表面场强、阈值电压的影响, 考虑了金属栅长度及功函数差变化的影响. 研究结果表明,提出的新器件结构能进一步提高电流驱动能力, 抑制短沟道效应和抑制漏致势垒降低效应, 为新器件物理参数设计提供了重要参考. 关键词: 非对称Halo 异质栅 应变Si 短沟道效应  相似文献   

12.
张彦辉  魏杰  尹超  谭桥  刘建平  李鹏程  罗小蓉 《中国物理 B》2016,25(2):27306-027306
A uniform doping ultra-thin silicon-on-insulator(SOI) lateral-double-diffused metal-oxide-semiconductor(LDMOS)with low specific on-resistance(R_on,sp) and high breakdown voltage(BV) is proposed and its mechanism is investigated.The proposed LDMOS features an accumulation-mode extended gate(AG) and back-side etching(BE). The extended gate consists of a P– region and two diodes in series. In the on-state with VGD 0, an electron accumulation layer is formed along the drift region surface under the AG. It provides an ultra-low resistance current path along the whole drift region surface and thus the novel device obtains a low temperature distribution. The R_on,sp is nearly independent of the doping concentration of the drift region. In the off-state, the AG not only modulates the surface electric field distribution and improves the BV, but also brings in a charge compensation effect to further reduce the R_on,sp. Moreover, the BE avoids vertical premature breakdown to obtain high BV and allows a uniform doping in the drift region, which avoids the variable lateral doping(VLD) and the "hot-spot" caused by the VLD. Compared with the VLD SOI LDMOS, the proposed device simultaneously reduces the R_on,sp by 70.2% and increases the BV from 776 V to 818 V.  相似文献   

13.
A low on-resistance(Ron,sp) integrable silicon-on-insulator(SOI) n-channel lateral double-diffused metal-oxide-semiconductor(LDMOS) is proposed and its mechanism is investigated by simulation.The LDMOS has two features:the integration of a planar gate and an extended trench gate(double gates(DGs));and a buried P-layer in the N-drift region,which forms a triple reduced surface field(RESURF)(TR) structure.The triple RESURF not only modulates the electric field distribution,but also increases N-drift doping,resulting in a reduced specific on-resistance(Ron,sp) and an improved breakdown voltage(BV) in the off-state.The DGs form dual conduction channels and,moreover,the extended trench gate widens the vertical conduction area,both of which further reduce the Ron,sp.The BV and Ron,sp are 328 V and 8.8 m.cm2,respectively,for a DG TR metal-oxide-semiconductor field-effect transistor(MOSFET) by simulation.Compared with a conventional SOI LDMOS,a DG TR MOSFET with the same dimensional device parameters as those of the DG TR MOSFET reduces Ron,sp by 59% and increases BV by 6%.The extended trench gate synchronously acts as an isolation trench between the high-voltage device and low-voltage circuitry in a high-voltage integrated circuit,thereby saving the chip area and simplifying the fabrication processes.  相似文献   

14.
马达  罗小蓉  魏杰  谭桥  周坤  吴俊峰 《中国物理 B》2016,25(4):48502-048502
A new ultra-low specific on-resistance(Ron,sp) vertical double diffusion metal–oxide–semiconductor field-effect transistor(VDMOS) with continuous electron accumulation(CEA) layer, denoted as CEA-VDMOS, is proposed and its new current transport mechanism is investigated. It features a trench gate directly extended to the drain, which includes two PN junctions. In on-state, the electron accumulation layers are formed along the sides of the extended gate and introduce two continuous low-resistance current paths from the source to the drain in a cell pitch. This mechanism not only dramatically reduces the Ron,sp but also makes the Ron,sp almost independent of the n-pillar doping concentration(Nn). In off-state, the depletion between the n-pillar and p-pillar within the extended trench gate increases the Nn, and further reduces the Ron,sp.Especially, the two PN junctions within the trench gate support a high gate–drain voltage in the off-state and on-state, respectively. However, the extended gate increases the gate capacitance and thus weakens the dynamic performance to some extent. Therefore, the CEA-VDMOS is more suitable for low and medium frequencies application. Simulation indicates that the CEA-VDMOS reduces the Ron,sp by 80% compared with the conventional super-junction VDMOS(CSJ-VDMOS)at the same high breakdown voltage(BV).  相似文献   

15.
A low specific on-resistance (Ron,sp) integrable silicon-on-insulator (SOI) metal-oxide semiconductor field-effect transistor (MOSFET) is proposed and investigated by simulation. The MOSFET features a recessed drain as well as dual gates which consist of a planar gate and a trench gate extended to the buried oxide layer (BOX) (DGRD MOSFET). First, the dual gates form dual conduction channels, and the extended trench gate also acts as a field plate to improve the electric field distribution. Second, the combination of the trench gate and the recessed drain widens the vertical conduction area and shortens the current path. Third, the P-type top layer not only enhances the drift doping concentration but also modulates the surface electric field distributions. All of these sharply reduce Ron,sp and maintain a high breakdown voltage (BV). The BV of 233 V and Ron,sp of 4.151 mΩ·cm2 (VGS=15 V) are obtained for the DGRD MOSFET with 15-μm half-cell pitch. Compared with the trench gate SOI MOSFET and the conventional MOSFET, Ron,sp of the DGRD MOSFET decreases by 36% and 33% with the same BV, respectively. The trench gate extended to the BOX synchronously acts as a dielectric isolation trench, simplifying the fabrication processes.  相似文献   

16.
Yue Li 《中国物理 B》2022,31(9):97307-097307
Ferroelectric (FE) HfZrO/Al$_{2}$O$_{3}$ gate stack AlGaN/GaN metal-FE-semiconductor heterostructure high-electron mobility transistors (MFSHEMTs) with varying Al$_{x}$Ga$_{1-x}$N barrier thickness and Al composition are investigated and compared by TCAD simulation with non-FE HfO$_{2}$/Al$_{2}$O$_{3}$ gate stack metal-insulator-semiconductor heterostructure high-electron mobility transistors (MISHEMTs). Results show that the decrease of the two-dimensional electron gas (2DEG) density with decreasing AlGaN barrier thickness is more effectively suppressed in MFSHEMTs than that in MISHEMTs due to the enhanced FE polarization switching efficiency. The electrical characteristics of MFSHEMTs, including transconductance, subthreshold swing, and on-state current, effectively improve with decreasing AlGaN thickness in MFSHEMTs. High Al composition in AlGaN barrier layers that are under 3-nm thickness plays a great role in enhancing the 2DEG density and FE polarization in MFSHEMTs, improving the transconductance and the on-state current. The subthreshold swing and threshold voltage can be reduced by decreasing the AlGaN thickness and Al composition in MFSHEMTs, affording favorable conditions for further enhancing the device.  相似文献   

17.
A new high voltage trench lateral double-diffused metal-oxide semiconductor (LDMOS) with ultra-low specific onresistance (R on,sp ) is proposed. The structure features a dual gate (DG LDMOS): a planar gate and a trench gate inset in the oxide trench. Firstly, the dual gate can provide a dual conduction channel and reduce R on,sp dramatically. Secondly, the oxide trench in the drift region modulates the electric field distribution and reduces the cell pitch but still can maintain comparable breakdown voltage (BV). Simulation results show that the cell pitch of the DG LDMOS can be reduced by 50% in comparison with that of conventional LDMOS at the equivalent BV; furthermore, R on,sp of the DG LDMOS can be reduced by 67% due to the smaller cell pitch and the dual gate.  相似文献   

18.
刘凡宇  刘衡竹  刘必慰  郭宇峰 《中国物理 B》2016,25(4):47305-047305
In this paper, the three-dimensional(3D) coupling effect is discussed for nanowire junctionless silicon-on-insulator(SOI) Fin FETs. With fin width decreasing from 100 nm to 7 nm, the electric field induced by the lateral gates increases and therefore the influence of back gate on the threshold voltage weakens. For a narrow and tall fin, the lateral gates mainly control the channel and therefore the effect of back gate decreases. A simple two-dimensional(2D) potential model is proposed for the subthreshold region of junctionless SOI Fin FET. TCAD simulations validate our model. It can be used to extract the threshold voltage and doping concentration. In addition, the tuning of back gate on the threshold voltage can be predicted.  相似文献   

19.
门极换流晶闸管透明阳极的机理与特性分析   总被引:1,自引:0,他引:1       下载免费PDF全文
通过分析门极换流晶闸管(GCT)透明阳极的电流输运过程,研究了透明阳极的机理,导出 了透明阳极电子电流密度的表达式.并利用MEDICI软件对GCT的开关特性进行了模拟,验证了 理论分析的正确性.另外,将GCT与具有普通阳极的门极可关断晶闸管(GTO)进行比较,分 析了透明阳极的特性,结果表明将透明阳极与缓冲层结合使用,可以更好地协调GCT的阻断 特性、通态特性及开关特性之间的矛盾,从而有效地改善GCT的综合特性.结论得到了实验结 果的证实. 关键词: 透明阳极 电力半导体器件 门极换流晶闸管 注入效率  相似文献   

20.
冉胜龙  黄智勇  胡盛东  杨晗  江洁  周读 《中国物理 B》2022,31(1):18504-018504
A three-dimensional(3D)silicon-carbide(SiC)trench metal-oxide-semiconductor field-effect transistor(MOSFET)with a heterojunction diode(HJD-TMOS)is proposed and studied in this work.The SiC MOSFET is characterized by an HJD which is partially embedded on one side of the gate.When the device is in the turn-on state,the body parasitic diode can be effectively controlled by the embedded HJD,the switching loss thus decreases for the device.Moreover,a highly-doped P+layer is encircled the gate oxide on the same side as the HJD and under the gate oxide,which is used to lighten the electric field concentration and improve the reliability of gate oxide layer.Physical mechanism for the HJD-TMOS is analyzed.Comparing with the conventional device with the same level of on-resistance,the breakdown voltage of the HJD-TMOS is improved by 23.4%,and the miller charge and the switching loss decrease by 43.2%and 48.6%,respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号