首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The physics that associated with the performance of lithium secondary batteries (LSB) are reviewed. The key physical problems in LSB include the electronic conduction mechanism, kinetics and thermodynamics of lithium ion migration, electrode/ electrolyte surface/interface, structural (phase) and thermodynamics stability of the electrode materials, physics of intercalation and deintercalation. The relationship between the physical/chemical nature of the LSB materials and the batteries performance is summarized and discussed. A general thread of computational materials design for LSB materials is emphasized concerning all the discussed physics problems. In order to fasten the progress of the new materials discovery and design for the next generation LSB, the Materials Genome Initiative (MGI) for LSB materials is a promising strategy and the related requirements are highlighted.  相似文献   

2.
纳米储锂材料和锂离子电池   总被引:7,自引:0,他引:7  
黄学杰  李泓  王庆  刘伟峰  师丽红  陈立泉 《物理》2002,31(7):444-449
简单综述了锂离子电池的基本原理和发展现状,对中国科学院物理研究所固体离子学课题组在纳米储锂材料方面的研究进展做了介绍。用HRTEM等手段研究了纳米SnO、纳米Si以及纳米SnSb合金在Li入脱嵌过程中结构的变化。着重介绍了一种具有纳米微孔的球形硬碳材料和纳米SnSb合金钉扎的复合负极材料,在高功率密度和高能量密度锂离子电池方面具有广阔应用前景。  相似文献   

3.
锂离子电池相关材料的Raman光谱学研究   总被引:2,自引:2,他引:0  
锂离子电池是目前综合性能最好的可充电池。本文总结我们实验室用Raman光谱学研究锂离子电池相关材料的一些结果 ,包括聚合物电解质的微结构和离子输运机制 ,低温热解碳负极材料的结构表征和锂离子在其中的嵌入 /脱出机理 ,元素替代引起正极材料LiMn2 O4的结构变化以及在充放电过程中电极 /电解质界面形成的钝化层的性质及其对电池性能的影响  相似文献   

4.
吕迎春  刘亚利  谷林 《中国物理 B》2016,25(1):18209-018209
Lithium ion batteries are important electrochemical energy storage devices for consumer electronics and the most promising candidates for electrical/hybrid vehicles. The surface chemistry influences the performance of the batteries significantly. In this short review, the evolution of the surface structure of the cathode materials at different states of the pristine, storage and electrochemical reactions are summarized. The main methods for the surface modification are also introduced.  相似文献   

5.
Preparation of LiCoO2 cathode materials from spent lithium–ion batteries are presented. It started with the reclaim/recycle of metal values from spent lithium–ion batteries, which involves the separation of electrode materials by ultrasonic treatment, acid dissolution, precipitation of cobalt and lithium, followed by the preparation of LiCoO2 cathode materials. Co (99.4%) and Li (94.5%) were recovered from spent lithium–ion batteries. The LiCoO2 cathode materials prepared from the reclaimed cobalt and lithium compounds showed good elecrtochemical performance. The reclaiming of cobalt and lithium has a promising outlook for the recycling of cobalt and lithium from spent Li–ion batteries, thus reducing the cost of Li–ion batteries.  相似文献   

6.
With the increasing energy demands for electronic devices and electrical vehicles, anode materials for lithium‐ion batteries with high specific capacity, good cyclic and rate performance become one of the focal areas of research. A class of them is the copper‐based nanomaterials that have thermal and chemical stability, high theoretical specific capacity, low price and environment friendliness. Now this kind of nanomaterials has been recognized as one of the critical materials for lithium‐ion batteries due to the predicted future market growth. Current status of different copper‐based materials which produced already are discussed. In this review, comprehensive summaries and evaluations are given in synthesis strategies, tailored material properties and different electrochemical performance. Recent progress of general copper‐based nanomaterials for lithium‐ion batteries is carefully presented.  相似文献   

7.
锂离子电池电极材料的第一性原理研究进展   总被引:1,自引:0,他引:1  
文章综述了第一性原理计算在锂离子电池电极材料模拟与设计方面的研究进展.电极材料的研究包括电极材料的电子结构和电子导电性的研究,嵌锂电位、锂离子输运特性、嵌锂过程中局部结构弛豫与相变以及材料表面特性研究等方面,第一性原理计算在上述诸方面的研究都取得了一定的进展.这些理论上的研究成果,可以帮助人们加深对材料性能与机理的理解,同时对材料的设计也具有指导意义.  相似文献   

8.
白莹  吴锋  吴川 《光散射学报》2003,15(4):231-236
采用固相反应与液相反应,合成了新型锂离子电池正极材料LiMPO4(M=Fe,Mn)。粉末X光衍射表明材料均为纯相。对材料的显微拉曼光谱和红外光谱进行了研究和指认。循环伏安研究表明,含锂磷酸盐是一类有潜力的锂离子电池正极材料。  相似文献   

9.
Silica (SiO2) is regarded as one of the most promising anode materials for lithium‐ion batteries due to the high theoretical specific capacity and extremely low cost. However, the low intrinsic electrical conductivity and the big volume change during charge/discharge cycles result in a poor electrochemical performance. Here, hollow silica spheres embedded in porous carbon (HSS–C) composites are synthesized and investigated as an anode material for lithium‐ion batteries. The HSS–C composites demonstrate a high specific capacity of about 910 mA h g?1 at a rate of 200 mA g?1 after 150 cycles and exhibit good rate capability. The porous carbon with a large surface area and void space filled both inside and outside of the hollow silica spheres acts as an excellent conductive layer to enhance the overall conductivity of the electrode, shortens the diffusion path length for the transport of lithium ions, and also buffers the volume change accompanied with lithium‐ion insertion/extraction processes.  相似文献   

10.
Solid-state NMR studies of composite polymer electrolytes are reported. The materials consist of polyethylene oxide and an organic inorganic composite, together with a lithium salt, and are candidates for electrolytes in solid-state lithium ion batteries. Silicon and aluminum MAS and multiple quantum MAS are used to characterize the network character of the organic-inorganic composite, and spin diffusion measurements are used to determine the nanostructure of the polymer/composite blending. Multiple quantum spin counting is used to measure the ion aggregation. The NMR results are supported by Raman spectra, calorimetry, and impedance spectroscopy. From these experiments it is concluded that the composite suppresses polymer crystallization without suppressing its local mobility, and also suppresses the tendency for the ions to aggregate. This polymer composite thus appears very promising for application in lithium ion batteries.  相似文献   

11.
A facile synthesis of porous graphitic carbon nanofibers (CNFs) with encapsulated Co nanoparticles (denote as Co@CNFs) via electrospinning and subsequent annealing is reported. The in situ generated Co nanoparticles (NPs) promote the CNF graphitization under a low temperature of 700 °C, which simultaneously results in the porous structure of the Co@CNFs with a large surface area (416 m2 g?1). Furthermore, urchin‐like CoSe2 nanorods are epitaxially grown from the Co@CNFs via a facile hydrothermal selenation, in which the embedded Co NPs serve as directing seeds and sacrificial Co‐source, and CoSe2 nanorods are rooted into the CNFs (denote as CoSe2@CNFs). When used as anode materials for lithium ion batteries, the CoSe2@CNFs demonstrate superior lithium storage properties, delivering a high reversible capacity of 1405 mA h g?1 after 300 cycles at a current density of 200 mA g?1. The enhanced lithium storage performance can be attributed to the novel hybrid structure, namely, the porous and graphitic CNFs can not only facilitate the charge/ion transfer but also buffer the volume changes of the electrode during lithiation/delithiation processes. More importantly, a general strategy is provided to graphitize amorphous carbon materials via the use of in situ generated transition metal nanoparticles as catalyst.  相似文献   

12.
Jianhua Liu  Libo Zhang  Lei Xu 《Ionics》2018,24(6):1603-1615
Three morphologies of two-dimension Boron with metallicity have been successfully synthetized by experiments. To access the potential of β12 borophene (□) and χ3 borophene monolayer (◇) as anode materials for lithium ion batteries, first-principles calculations based on density functional theory (DFT) are performed. Lithium atom is preferentially absorbed over the center of the hexagonal B atom hollow of β12 and χ3 borophene monolayer. The fully lithium storage phase of β12 and χ3 borophene monolayer corresponds to Li8B10 and Li8B16 with a theoretical specific capacity of 1983 and 1240 mA h g?1, respectively, much larger than other two-dimension materials. Interestingly, lithium ion diffusion on β12 borophene (□) monolayer is extremely fast with a low-energy barrier of 41 meV. Meanwhile, lithiated-borophene monolayer shows enhanced metallic conductivity during the whole lithiation process. Compared to the buckled borophene (△), the extremely enhanced lithium adsorption energy of β12 and χ3 phase with vacancies weakens lithium ion diffusion. Therefore, it is important to control the generation of vacancy in the buckled borophene (△) anode for lithium ion batteries. Borophene is a promising candidate with high capacity and high rate capability for anode material in lithium ion batteries.  相似文献   

13.
This work presents a feasible route for the facile synthesis of three-dimensional (3D) hierarchical mesocarbon microbead (MCMB) as anodes for lithium ion batteries (LIBs) and sodium ion batteries (SIBs). The MCMB is oxidized by modified hummers method, and then the precursor is treated by hydrogen reduction to form the HMCMB. The HMCMB with graphene-like architecture has high specific surface, sufficient pore volume, and increased interlayer spacing, which can provide more active insertion/extraction sites and reduce the Li+/Na+ diffusion resistance. When employed as anode materials for LIBs and SIBs, HMCMB anodes exhibit improved lithium and sodium storage capability. The HMCMB delivers a higher reversible capacity (471.1 and 177.5 mAh g?1 at 100 mA g?1 after 100 cycles) and a good rate performance (250 and 121 mAh g?1 even at 1000 mA g?1) for LIBs and SIBs, respectively.  相似文献   

14.
彭劼扬  王家海  沈斌  李浩亮  孙昊明 《物理学报》2019,68(9):90202-090202
硅作为锂离子电池电极材料之一,其应力效应尤为突出,进而将影响电池性能.本文建立了电化学反应-扩散-应力全耦合模型,并研究了恒压充放电条件下扩散诱导应力、表面效应和颗粒间挤压作用对电压迟滞的影响.结果发现,应力及其导致的电压迟滞程度与颗粒尺寸相关.在大颗粒(颗粒半径r 100 nm)中,扩散诱导应力是导致电势迟滞效应的主要因素,这将导致电池能量耗散.对于纳米级小颗粒(r 100 nm)而言,表面效应占据主导,表面效应虽然能缓解电压迟滞,同时却会使驱动电化学反应部分的过电势回线下移,造成锂化容量衰减.本文综合考虑了扩散诱导应力和表面效应,得出:半径为10 nm的颗粒将会使电极具备较好的综合性能.此外,对于硅电极而言,颗粒间挤压作用会使应力回线向压应力状态演化,进而导致锂化容量的衰减.计算结果表明,在电极设计中,对孔隙率设定下限值有助于提升电极性能.  相似文献   

15.
Lithium ion batteries have become attractive for portable devices due to their higher energy density compared to other systems. With a growing interest to develop rechargeable batteries for electric vehicles, lithium iron phosphate (LiFePO4) is considered to replace the currently used LiCoO2 cathodes in lithium ion cells. LiFePO4 is a technically important cathode material for new-generation power lithium ion battery applications because of its abundance in raw materials, environmental friendliness, perfect cycling performance, and safety characteristics. However, the commercial use of LiFePO4 cathode material has been hindered to date by their low electronic conductivity. This review highlights the recent progress in improving and understanding the electrochemical performance like the rate ability and cycling performance of LiFePO4 cathode. This review sums up some important researches related to LiFePO4 cathode material, including doping and coating on surface. Doping elements with coating conductive film is an effective way to improve its rate ability.  相似文献   

16.
The discovery of two-dimensional (2D) materials like graphene inspired the researchers and scientists to develop new 2D materials. The 2D materials create extensive attention due to their novel electronic properties, large surface area, charging capacity, optical, biocompatible, unique physical and chemical properties. Many of these properties are an excellent requirement for an application of electrode for batteries and super-capacitors. The applications of 2D materials are not just confined to Opto and nano-electronics but a strong potential in gas, and biosensing technologies. The 2D materials are stackable through weak Van der Waals, therefore, used in alkali metal ion batteries as electrodes, this causes zero volume and area changes during the intercalation and deintercalation of alkali metal. Also, a large surface of 2D materials provides large storage capacity as compared to the bulk materials. The heterostructures based on 2D materials pay significant attention towards the optoelectronics, nanoelectronics and in alkali metal ion battery applications also. In this paper, we review the importance of heterostructure, stacking technique in interfacial synthesis, address their structural morphologies by the interface of 2D materials and its application for energy storage, gas, and biosensing applications. We will come up with an overview of interfacial characters and highlights about the advantages and individuality of 2D materials.  相似文献   

17.
The development of methods to synthesize electrode materials can improve the performance of lithium ion storage. In this study, a facile and low-cost approach is employed to synthesize LiFePO4 (LFP/NC) hybrid materials decorated with nitrogen-doped carbon nanomaterials (NC). Melamine was used as nitrogen and carbon source with an NC to LFP ratio of 3.19%. As electrode materials for lithium ion batteries (LIBs), the LFP/NC composites exhibit an optimum performance with a high rate capacity of 144.6 mAh·g?1 at 1 C after 500 cycles without apparent loss. The outstanding cycling stability may be attributed to the synergetic effects of well-crystallized particles and NC layers.  相似文献   

18.
SiO2 is one of the most promising lithium storage materials for lithium-ion batteries anodes due to its low cost, good environmental compatibility, low working voltage, and high-specific capacity. In this work, the desert sands, which are rich in SiO2, are investigated as the anode material for lithium-ion batteries. The electrochemical activation, lithium storage capacity, and cycle properties are highly dependent on the particle size distribution of sands. As the average particle sizes of sands gradually decrease, the reversible lithium storage capacity increases from 137 mAh g?1 (several microns) to 492 mAh g?1 (several submicrons). The 72 h-milled sands (average particle size: ~1 μm) deliver a stable lithium storage capacity of ~400 mAh g?1 over 400 cycles with the capacity retention as high as 95%. The reason for the electrochemical activation, lithium storage capacity, and cycle properties of sands associated with their particle size distribution is also discussed.  相似文献   

19.
Structural transformation behaviors of several typical oxide cathode materials during a heating process are reviewed in detail to provide in-depth understanding of the key factors governing the thermal stability of these materials. We also discuss applying the information about heat induced structural evolution in the study of electrochemically induced structural changes. All these discussions are expected to provide valuable insights for designing oxide cathode materials with significantly improved structural stability for safe, long-life lithium ion batteries, as the safety of lithium-ion batteries is a critical issue; it is widely accepted that the thermal instability of the cathodes is one of the most critical factors in thermal runaway and related safety problems.  相似文献   

20.
Porous electrode materials with large specific surface area, relatively short diffusion path, and higher electrical conductivity, which display both better rate capabilities and good cycle lives, have huge benefits for practical applications in lithium‐ion batteries. Here, uniform porous NiCo2O4 nanorods (PNNs) with pore‐size distribution in the range of 10–30 nm and lengths of up to several micrometers are synthesized through a convenient oxalate co‐precipitation method followed by a calcining process. The PNN electrode exhibits high reversible capacity and outstanding cycling stability (after 150 cycles still maintain about 650 mA h g?1 at a current density of 100 mA g?1), as well as high Coulombic efficiency (>98%). Moreover, the PNNs also exhibit an excellent rate performance, and deliver a stable reversible specific capacity of 450 mA h g?1 even at 2000 mA g?1. These results demonstrate that the PNNs are promising anode materials for high‐performance Li‐ion batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号