首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 46 毫秒
1.
《中国物理 B》2021,30(6):66702-066702
We study the properties of Bose–Einstein condensates under a non-Hermitian spin–orbit coupling(SOC), induced by a dissipative two-photon Raman process. We focus on the dynamics of the condensate at short times, when the impact of decoherence induced by quantum jumps is negligible and the dynamics is coherently driven by a non-Hermitian Hamiltonian. Given the significantly modified single-particle physics by dissipative SOC, the interplay of non-Hermiticity and interaction leads to a quasi-steady-state phase diagram different from its Hermitian counterpart. In particular, we find that dissipation can induce a phase transition from the stripe phase to the plane-wave phase. We further map out the phase diagram with respect to the dissipation and interaction strengths, and finally investigate the stability of quasi-steady states through the time-dependent dissipative Gross–Pitaevskii equation. Our results are readily accessible based on standard experiments with synthetic spin–orbit couplings.  相似文献   

2.
We report a kind of kink-like breathers in one-dimensional Bose–Einstein condensates (BECs) with helicoidal spin–orbit coupling (SOC), on whose two sides the background densities manifest obvious difference (called kink amplitude). The kink amplitude and shape of breather can be adjusted by the strength and period of helicoidal SOC, and its atomic number in two components exchanges periodically with time. The SOC has similar influence on the kink amplitude and the exchanged atomic number, especially when the background wave number is fixed. It indicates that the oscillating intensity of breather can be controlled by adjusting initial kink amplitude. Our work showcases the great potential of realizing novel types of breathers through SOC, and deepens our understanding on the formation mechanisms of breathers in BECs.  相似文献   

3.
We investigate Bose–Einstein condensates in concentrically coupled annular traps with spin–orbit coupling and rotation. The ground state wave functions are computed by minimizing the Gross–Pitaevskii energy functional, and the combined effects of system?s parameters, especially the spin–orbit coupling and rotating, are investigated. The results show that for a finite fixed spin–orbit coupling, with increasing the angular frequency of rotation, the system is always in phase coexistence. Moreover, phase transitions between different ground state phases can be induced not only by spin–orbit coupling, but also rotation, which resembles very much the one where the s-wave interactions are varied.  相似文献   

4.
By generalizing the Green’s function approach developed by Beliaev [S.T. Beliaev, Sov. Phys. JETP 7 (1958) 299; S.T. Beliaev, Sov. Phys. JETP 7 (1958) 289], we study effects of quantum fluctuations on the energy spectra of spin-1 spinor Bose–Einstein condensates, in particular, of a 87Rb condensate in the presence of an external magnetic field. We find that due to quantum fluctuations, the effective mass of magnons, which characterizes the quadratic dispersion relation of spin-wave excitations, increases compared with its mean-field value. The enhancement factor turns out to be the same for two distinct quantum phases: the ferromagnetic and polar phases, and it is a function of only the gas parameter. The lifetime of magnons in a spin-1 87Rb spinor condensate is shown to be much longer than that of phonons due to the difference in their dispersion relations. We propose a scheme to measure the effective mass of magnons in a spinor Bose gas by utilizing the effect of magnons’ nonlinear dispersion relation on the time evolution of the distribution of transverse magnetization. This type of measurement can be applied, for example, to precision magnetometry.  相似文献   

5.
Interaction between Rydberg atoms can be used to control the properties of interatomic interaction in ultracold gases by weakly dressing the atoms with a Rydberg state. Here we investigate the effect of the Rydberg-dressing interaction on the ground-state properties of a Bose–Einstein condensate imposed by Raman-induced spin–orbit coupling. We find that,in the case of SU(2)-invariant s-wave interactions, the gas is only in the plane-wave phase and the zero-momentum phase is absent. In particular, we also predict an unexpected magnetic stripe phase composed of two plane-wave components with unequal weight when s-wave interactions are non-symmetric, which originates from the Rydberg-dressing interaction.  相似文献   

6.
《中国物理 B》2021,30(10):106701-106701
We consider two-dimensional spinor F = 1 Bose–Einstein condensates in two types of radially-periodic potentials with spin–orbit coupling, i.e., spin-independent and spin-dependent radially-periodic potentials. For the Bose–Einstein condensates in a spin-independent radially-periodic potential, the density of each component exhibits the periodic density modulation along the azimuthal direction, which realizes the necklacelike state in the ferromagnetic Bose–Einstein condensates. As the spin-exchange interaction increases, the necklacelike state gradually transition to the plane wave phase for the antiferromagnetic Bose–Einstein condensates with larger spin–orbit coupling. The competition of the spin-dependent radially-periodic potential, spin–orbit coupling, and spin-exchange interaction gives rise to the exotic ground-state phases when the Bose–Einstein condensates in a spin-dependent radially-periodic potential.  相似文献   

7.
张华峰  陈方  郁春潮  孙利辉  徐大海 《中国物理 B》2017,26(8):80304-080304
Properties of the ground-state solitons, which exist in the spin–orbit coupling(SOC) Bose–Einstein condensates(BEC) in the presence of optical lattices, are presented. Results show that several system parameters, such as SOC strength,lattice depth, and lattice frequency, have important influences on properties of ground state solitons in SOC BEC. By controlling these parameters, structure and spin polarization of the ground-state solitons can be effectively tuned, so manipulation of atoms may be realized.  相似文献   

8.
We prove that in a two-dimensional homogeneous boson system with Rashba spin–orbit coupling, Bose–Einstein condensate with plane-wave order is unstable at finite temperature. The calculations are based on a nonlinear sigma model scheme. The density wave contributions to the thermal deletions are divergent in the infrared limit. The behavior of the divergence is different from that without spin–orbit coupling.  相似文献   

9.
We investigate the dynamics of bright matter wave solitons in spin-1 Bose–Einstein condensates with time modulated nonlinearities. We obtain soliton solutions of an integrable autonomous three-coupled Gross–Pitaevskii (3-GP) equations using Hirota?s method involving a non-standard bilinearization. The similarity transformations are developed to construct the soliton solutions of non-autonomous 3-GP system. The non-autonomous solitons admit different density profiles. An interesting phenomenon of soliton compression is identified for kink-like nonlinearity coefficient with Hermite–Gaussian-like potential strength. Our study shows that these non-autonomous solitons undergo non-trivial collisions involving condensate switching.  相似文献   

10.
An overview of the physics of spinor and dipolar Bose–Einstein condensates (BECs) is given. Mean-field ground states, Bogoliubov spectra, and many-body ground and excited states of spinor BECs are discussed. Properties of spin-polarized dipolar BECs and those of spinor–dipolar BECs are reviewed. Some of the unique features of the vortices in spinor BECs such as fractional vortices and non-Abelian vortices are delineated. The symmetry of the order parameter is classified using group theory, and various topological excitations are investigated based on homotopy theory. Some of the more recent developments in a spinor BEC are discussed.  相似文献   

11.
文林  梁毅  周晶  余鹏  夏雷  牛连斌  张晓斐 《物理学报》2019,68(8):80301-080301
利用变分近似及基于Gross-Pitaevskii方程的直接数值模拟方法,研究了自旋-轨道耦合玻色-爱因斯坦凝聚体中线性塞曼劈裂对亮孤子动力学的影响,发现线性塞曼劈裂将导致体系具有两个携带有限动量的静态孤子,以及它们在微扰下存在一个零能的Goldstone激发模和一个频率与线性塞曼劈裂有关的谐振激发模.同时给出了描述孤子运动的质心坐标表达式,发现线性塞曼劈裂明显影响孤子的运动速度和振荡周期.  相似文献   

12.
Hao Zhu 《中国物理 B》2022,31(4):40306-040306
We investigate the vortex structures excited by Ioffe-Pritchard magnetic field and Dresselhaus-type spin-orbit coupling in F=2 ferromagnetic Bose-Einstein condensates. In the weakly interatomic interacting regime, an external magnetic field can generate a polar-core vortex in which the canonical particle current is zero. With the combined effect of spin-orbit coupling and magnetic field, the ground state experiences a transition from polar-core vortex to Mermin-Ho vortex, in which the canonical particle current is anticlockwise. For fixed spin-orbit coupling strengths, the evolution of phase winding, magnetization, and degree of phase separation with magnetic field are studied. Additionally, with further increasing spin-orbit coupling strength, the condensate exhibits symmetrical density domains separated by radial vortex arrays. Our work paves the way to explore exotic topological excitations in high-spin systems.  相似文献   

13.
《中国物理 B》2021,30(6):60310-060310
We have investigated the dynamics of bright solitons in a spin–orbit coupled spin-1 Bose–Einstein condensate analytically and numerically. By using the hyperbolic sine function as the trial function to describe a plane wave bright soliton with a single finite momentum, we have derived the motion equations of soliton's spin and center of mass, and obtained its exact analytical solutions. Our results show that the spin–orbit coupling couples the soliton's spin with its center-of-mass motion, the spin oscillations induced by the exchange of atoms between components result in the periodical oscillation of center-of-mass, and the motion of center of mass of soliton can be viewed as a superposition of periodical and linear motions. Our analytical results have also been confirmed by the direct numerical simulations of Gross–Pitaevskii equations.  相似文献   

14.
Hao Zhu 《中国物理 B》2022,31(6):60305-060305
We investigate the anisotropic spin-orbit coupled spin-2 Bose-Einstein condensates with Ioffe-Pritchard magnetic field. With nonzero magnetic field, anisotropic spin-orbit coupling will introduce several vortices and further generate a vortex chain. Inside the vortex chain, the vortices connect to each other, forming a line along the axis. The physical nature of the vortex chain can be explained by the particle current and the momentum distribution. The vortex number inside the vortex chain can be influenced via varying the magnetic field. Through adjusting the anisotropy of the spin-orbit coupling, the direction of the vortex chain is changed, and the vortex lattice can be triggered. Moreover, accompanied by the variation of the atomic interactions, the density and the momentum distribution of the vortex chain are affected. The realization and the detection of the vortex chain are compatible with current experimental techniques.  相似文献   

15.
Li Wang 《中国物理 B》2021,30(11):110312-110312
The ground state properties of the rotating Bose-Einstein condensates (BECs) with SU(3) spin-orbit coupling (SOC) in a two-dimensional harmonic trap are studied. The results show that the ferromagnetic and antiferromagnetic systems present three half-skyrmion chains at an angle of 120° to each other along the coupling directions. With the enhancement of isotropic SU(3) SOC strength, the position of the three chains remains unchanged, in which the number of half-skyrmions increases gradually. With the increase of rotation frequency and atomic density-density interaction, the number of half-skyrmions on the three chains and in the regions between two chains increases gradually. The relationships of the total number of half-skyrmions on the three chains with the increase of SU(3) SOC strength, rotation frequency and atomic density-density interaction are also given. In addition, changing the anisotropic SU(3) SOC strength can regulate the number and morphology of the half-skyrmion chains.  相似文献   

16.
李吉  刘伍明 《物理学报》2018,67(11):110302-110302
利用准二维Gross-Pitaevskii方程,研究了在梯度磁场中具有自旋-轨道耦合的旋转两分量玻色-爱因斯坦凝聚体的基态结构.探索了自旋-轨道耦合作用和梯度磁场对基态的影响.结果发现,在梯度磁场下,随着自旋-轨道耦合强度增大,基态结构由skyrmion格子逐渐过渡为skyrmion列.对于弱自旋-轨道耦合和小旋转频率情况,增大磁场梯度强度可导致基态由平面波相转变为half-skyrmion;对于强自旋-轨道耦合和大旋转频率情况,梯度磁场可诱导hidden涡旋的产生.梯度磁场、自旋-轨道耦合和旋转作为体系的调控参数,可用于控制不同基态相间的转化.  相似文献   

17.
李志  王建忠 《物理学报》2013,62(10):100306-100306
对自旋-轨道耦合玻色-爱因斯坦凝聚中的双势垒散射问题进行了研究, 得到了系统透射系数的解析表达式, 并对如何克服Klein隧穿以及如何束缚Dirac粒子进行了讨论并给出囚禁Dirac粒子的实验方案. 此外, 运用时间劈裂谱方法对Dirac粒子势垒散射问题进行了数值模拟. 分析了Dirac粒子分别在势垒Klein阻塞区域中心以及边缘的透射情况. 最后从排斥和吸引相互作用两方面研究了非线性相互作用对于Dirac粒子演化的影响, 结果表明弱非线性相互作用对散射特性的影响非常小, 而强非线性相互作用会彻底破坏波包的动量分布, 从而改变Dirac粒子的势垒散射效果. 关键词: 自旋-轨道耦合 Klein隧穿 势垒散射 玻色-爱因斯坦凝聚  相似文献   

18.
The Rabi coupling between two components of Bose-Einstein condensates is used to controllably change ordinary dark soliton into dynamic vector dark soliton or ordinary vector dark soliton. When all inter- and intraspecies interactions are equal, the dynamic vector dark soliton is exactly constructed by two sub-dark-solitons, which oscillate with the same velocity and periodically convert with each other. When the interspecies interactions deviate from the intraspecies ones, the whole soliton can maintain its essential shape, but the sub-dark-soliton becomes inexact or is broken. This study indicates that the Rabi coupling can be used to obtain various vector dark solitons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号