首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We theoretically study the broadband near-field optical spectrum of twisted bilayer graphene (TBG) at various twist angles near the magic angle using two different models. The spectrum at low Fermi energy is characterized by a series of peaks that are almost at the same energies as the peaks in the far-field optical conductivity of TBG. When the Fermi energy is near a van Hove singularity, an additional strong peak appears at finite energy in the near-field spectrum, which has no counterpart in the optical conductivity. Based on a detailed calculation of the plasmon dispersion, we show that these spectroscopic features are associated with interband and intraband plasmons, which can provide critical information about the local band structure and plasmonic excitations in TBG. The near-field peaks evolve systematically with the twist angle, so they can serve as fingerprints for identifying the spatial dependent twist angle in TBG samples. Our findings pave the way for future experimental studies of the novel optical properties of TBG in the nanoscale.  相似文献   

2.
周畅  龚蕊  冯小波 《物理学报》2022,(5):157-165
层间扭转角度是对石墨烯物理性质宽波段可调谐的一个新参量.本文采用2°<θ<15°扭转角度下的连续近似模型,获得了不同扭转角度双层石墨烯分别在有、无电场下的能带结构,通过电子-光子相互作用跃迁速率,计算模拟了范霍夫奇点附近电子带内跃迁和带间跃迁所引起的光学吸收谱.结果表明,在无外加电场时,带间跃迁吸收峰的位置随着扭转角度的增大而发生从红外到可见光波段的蓝移,且吸收系数增大,带内跃迁的光学吸收系数相对于带间跃迁高出2个数量级;而存在外加电场时,两个范霍夫奇点在波矢空间的位置发生偏移,带间跃迁吸收峰发生分裂,且两个分裂的吸收峰位置随着电场强度的不断增大而反向行进.上述研究结果对石墨烯材料在光电器件方面的应用有一定指导作用.  相似文献   

3.
In bilayer graphene, mutual rotation of layers has strong effect on the electronic structure. We theoretically study the distribution of electron density in twisted bilayer graphene with the rotation angle of 21.8° and find that regions with AA‐like and AB‐like stacking patterns separately contribute to the interlayer low‐energy van Hove singularities. In order to investigate the peculiarities of interlayer coupling, the charge density map between the layers is examined. The presented results reveal localization of π‐electrons between carbon atoms belonging to different graphene layers when they have AA‐like stacking environment, while the interlayer coupling is stronger within AB‐stacked regions.

Charge density map for bilayer graphene with a layer twist of 21.8° (interlayer region).  相似文献   


4.
The structural, electronic, and optical properties of rutile-, CaC12-, and PdF2-ZnF2 are calculated by the plane-wave pseudopotential method within the density functional theory. The calculated equilibrium lattice constants are in reasonable agreement with the available experimental and other calculated results. The band structures show that the rutile-, CaCl2-, and PdF2-ZnF2 are all direct band insulator. The band gaps are 3.63, 3.62, and 3.36 eV, respectively. The contribution of the different bands was analyzed by the density of states. The Mulliken population analysis is performed. A mixture of covalent and weak ionic chemical bonding exists in ZnF2. Furthermore, in order to understand the optical properties of ZnF2, the dielectric function, absorption coefficient, refractive index, electronic energy loss spectroscopy, and optical reflectivity are also performed in the energy range from 0 to 30 eV. It is found that the main absorption parts locate in the UV region for ZnF2. This is the first quantitative theoretical prediction of the electronic and optical properties of ZnF2 compound, and it still awaits experimental confirmation.  相似文献   

5.
《Current Applied Physics》2015,15(6):691-697
Density functional theory based calculations revealed that optical properties of AA-stacked bilayer graphene are anisotropic and highly sensitive to the interlayer separation. In the long wave length limit of electromagnetic radiation, the frequency dependent response of complex dielectric function becomes vanishingly small beyond the optical frequency of 25.0 eV. Besides, static dielectric constant shows a saturation behaviour for parallel polarization of electric field vector when interlayer spacing is greater than 2.75 Å. As a consequence, an appropriate modification of effective fine structure constant is observed as a function of layer separation. Moreover, the bilayer systems are highly transparent in the optical frequency range of 7.0–10.0 eV. The electron energy loss function exhibits two different in-plane collective (plasmon) excitations and a single out of plane plasmon excitation. The spectral nature of different frequency dependent optical properties is observed to be very similar to that of the monolayer pristine graphene apart from their exact numerical values.  相似文献   

6.
We studied and compared the transport properties of charge carriers in bilayer graphene, monolayer graphene, and the conventional semiconductors (the two-dimensional electron gas (2DEG)). It is elucidated that the normal incidence transmission in the bilayer graphene is identical to that in the 2DEG but totally different from that in the monolayer graphene. However, resonant peaks appear in the non-normal incidence transmission profile for a high barrier in the bilayer graphene, which do not occur in the 2DEG. Furthermore, there are tunneling and forbidden regions in the transmission spectrum for each material, and the division of the two regions has been given in the work. The tunneling region covers a wide range of the incident energy for the two graphene systems, but only exists under specific conditions for the 2DEG. The counterparts of the transmission in the conductance profile are also given for the three materials, which may be used as high-performance devices based on the bilayer graphene.  相似文献   

7.
汪涛  郭清  刘艳  盛况 《中国物理 B》2012,21(6):67301-067301
An AB- and AA-stacked bilayer graphene sheet(BLG) under an electric field is investigated by ab initio calculation.The interlayer distance between the two layers,band structures,and atomic charges of the system are investigated in the presence of different electric fields normal to the BLG.The AB- stacked BLG is able to tune the bandgap into 0.234 eV with the increase of the external electronic field to 1 V/nm,however,the AA-stacked BLG is not sensitive to the external electric field.In both the cases,the spacing between the BLG slightly change in terms of the electric field.The charges in the AB- stacked BLG are increased with the increase of the electric field,which is considered to be the reason that causes the bandgap opening in the AB- stacked BLG.  相似文献   

8.
We present a system study on the electronic structure and optical property of boron doped semiconducting graphene nanoribbons using the density functional theory. Energy band structure, density of states, deformation density, Mulliken popular and optical spectra are considered to show the special electronic structure of boron doped semiconducting graphene nanoribbons. The C—B bond form is discussed in detail. From our analysis it is concluded that the Fermi energy of boron doped semiconducting graphene nano...  相似文献   

9.
A Kheyri  Z Nourbakhsh 《中国物理 B》2016,25(9):93102-093102
The thermal properties of pure graphene and graphene–impurity(impurity = Fe,Co,Si,and Ge) sheets have been investigated at various pressures(0–7 GPa) and temperatures(0–900 K).Some basic thermodynamic quantities such as bulk modulus,coefficient of volume thermal expansion,heat capacities at constant pressure and constant volume of these sheets as a function of temperature and pressure are discussed.Furthermore,the effect of the impurity density and tensile strain on the thermodynamic properties of these sheets are investigated.All of these calculations are performed based on the density functional theory and full quasi harmonic approximation.  相似文献   

10.
The structural, mechanical, electronic, and bonding properties and phase transition of NaZnSb are explored using the generalized gradient approximation based on ab initio plane-wave pseudopotential density functional theory. With the help of the quasi-harmonic Debye model, we probe the Grüneisen parameter, thermal expansivity, heat capacity, Debye temperature, and entropy of NaZnSb in the tetragonal phase. The results indicate that the lattice constants and the bulk modulus and its first pressure derivative agree well with the available theoretical and experimental data. NaZnSb in its ground state structure exhibits a distinct energy gap of about 0.41 eV, which increases with increasing pressure. Our conclusions are consistent with the theoretical predictions obtained by the ABINIT package, but are different from those obtained through the tight-binding linear muffin-tin orbital method. As a result, further experimental and theoretical researches need to be carried out. For the purpose of providing a comparative and complementary study for future research, we first investigate the thermodynamic properties of NaZnSb.  相似文献   

11.
常景  兰俊卿  艾琼  陈向荣 《中国物理 B》2009,18(7):2938-2944
The electronic and optical properties of the cubic zinc-blende (ZB) structured filled tetrahedral semiconductor α-LiZnN under pressure are investigated by using \textit{ab initio} plane wave pseudopotential density functional theory method within the generalized gradient approximation (GGA). The electronic band structure and the density of state under pressure are systematically described. The basic optical constants, including the reflection and absorption spectra, the energy-loss function, the complex refractive index and the dielectric function, are calculated and analysed at different external pressures. Our results suggested that the ZB α-LiZnN is transparent in the partially ultra-violet to the visible light region, and it seems that the transparency is hardly affected by the pressure.  相似文献   

12.
13.
Based on a semiclassical Boltzmann transport equation in random phase approximation, we develop a theoretical model to understand low-field carrier transport in biased bilayer graphene, which takes into account the charged impurity scattering, acoustic phonon scattering, and surface polar phonon scattering as three main scattering mechanisms. The surface polar optical phonon scattering of carriers in supported bilayer graphene is thoroughly studied using the Rode iteration method. By considering the metal–BLG contact resistance as the only one free fitting parameter, we find that the carrier density dependence of the calculated total conductivity agrees well with that observed in experiment under different temperatures. The conductivity results also suggest that in high carrier density range, the metal–BLG contact resistance can be a significant factor in determining the BLG conductivity at low temperature, and both acoustic phonon scattering and surface polar phonon scattering play important roles at higher temperature, especially for BLG samples with a low doping concentration, which can compete with charged impurity scattering.  相似文献   

14.
吴江滨  张昕  谭平恒  冯志红  李佳 《物理学报》2013,62(15):157302-157302
本文将第一性原理和紧束缚方法结合起来, 研究了层间不同旋转角度对双层石墨烯的电子能带结构和态密度的影响. 分析发现, 旋转双层石墨烯具有线性的电子能量色散关系, 但其费米速度随着旋转角度的减小而降低. 进一步研究其电子能带结构发现, 不同旋转角度的双层石墨烯在M点可能会出现大小不同的的带隙, 而这些能隙会增强双层石墨烯的拉曼模强度, 并由拉曼光谱实验所证实. 通过对比双层石墨烯的晶体结构和电子态密度, 发现M点处带隙来自于晶体结构中的“类AB堆垛区”. 关键词: 旋转双层石墨烯 第一性原理 紧束缚 电子结构  相似文献   

15.
The geometric, energetic, electronic structures and optical properties of ZnO nanowires (NWs) with hexagonal cross sections are investigated by using the first-principles calculation of plane wave ultra-soft pseudo-potential technology based on the density functional theory (DFT). The calculated results reveal that the initial Zn-O double layers merge into single layers after structural relaxations, the band gap and binding energies decrease with the increase of the ZnO nanowire size. Those properties show great dimension and size dependence. It is also found that the dielectric functions of ZnO NWs have different peaks with respect to light polarization, and the peaks of ZnO NWs exhibit a significant blueshift in comparison with those of bulk ZnO. Our results gives some reference to the thorough understanding of optical properties of ZnO, and also enables more precise monitoring and controlling during the growth of ZnO materials to be possible.  相似文献   

16.
Recent experiments reported fascinating phenomenon of photoluminescence (PL) blueshift in Ge-doped ZnO. To understand it, we examined the structural, electronic and optical properties of Ge-doped ZnO (ZnO:Ge) systematically by means of density functional theory calculations. Our results show that Ge atoms tend to cluster in heavily doped ZnO. Ge clusters can limit the conductivity of doped ZnO but reinforce the near-band-edge emission. The substitutional Ge for Zn leads to Fermi level pinning in the conduction band, which indicates Ge-doped ZnO is of n-type conductivity character. It is found that the delocalized Ge 4s states hybridize with conduction band bottom, and is dominant in the region near the Fermi level, suggesting that Ge-4s states provides major free carriers in ZnO:Ge crystal. The observed blueshift of PL in Ge-doped ZnO originates from the electron transition energy from the valence band to the empty levels above Fermi level larger than the gap of undoped ZnO. The electron transition between the gap states induced by oxygen vacancy and conduction band minimum may be the origin of the new PL peak at 590 nm.  相似文献   

17.
Natural intercalation of the graphite oxide, obtained as a product of Hummer's method, via ultra-sonication of water dispersed graphite oxide has been carried out to obtain graphene oxide(GO) and thermally reduced graphene oxide(RGO).Here we report the effect of metallic nitrate on the oxidation properties of graphite and then formation of metallic oxide(MO) composites with GO and RGO for the first time. We observed a change in the efficiency of the oxidation process as we replaced the conventionally used sodium nitrate with that of nickel nitrate Ni(NO_3)_2, cadmium nitrate Cd(NO_3)_2,and zinc nitrate Zn(NO_3)_2. The structural properties were investigated by x-ray diffraction and observed the successful formation of composite of MO–GO and MO–RGO(M = Zn, Cd, Ni). We sought to study the effect on the oxidation process through optical characterization via UV-Vis spectroscopy and Fourier Transform Infrared(FTIR) spectroscopy.Moreover, Thermo Gravimetric Analysis(TGA) was carried out to confirm 90% weight loss in each process thus proving the reliability of the oxidation cycles. We have found that the nature of the oxidation process of graphite powder and its optical and electrochemical characteristics can be tuned by replacing the sodium nitrate(NaNO_3) by other metallic nitrates as Cd(NO_3)_2, Ni(NO_3)_2, and Zn(NO_3)_2. On the basis of obtained results, the synthesized GO and RGO may be expected as a promising material in antibacterial activity and in electrodes fabrication for energy devices such as solar cell, fuel cell,and super capacitors.  相似文献   

18.
Silicon carbide nanosheets (SiCNSs) have a very broad application prospect in the field of new two-dimensional (2D) materials. In this paper, the interlayer interaction mechanism of bilayer SiCNSs (BL-SiCNSs) and its effect on optical properties are studied by first principles. Taking the charge and dipole moment of the layers as parameters, an interlayer coupling model is constructed which is more convenient to control the photoelectric properties. The results show that the stronger the interlayer coupling, the smaller the band gap of BL-SiCNSs. The interlayer coupling also changes the number of absorption peaks and causes the red or blue shift of absorption peaks. The strong interlayer coupling can produce obvious dispersion and regulate the optical transmission properties. The larger the interlayer distance, the smaller the permittivity in the vertical direction. However, the permittivity of the parallel direction is negative in the range of 150-300 nm, showing obvious metallicity. It is expected that the results will provide a meaningful theoretical basis for further study of SiCNSs optoelectronic devices.  相似文献   

19.
赵小明  吴亚杰  陈婵  梁颖  寇谡鹏 《中国物理 B》2016,25(11):117303-117303
In this paper,we study the quantum properties of a bilayer graphene with(asymmetry) line defects.The localized states are found around the line defects.Thus,the line defects on one certain layer of the bilayer graphene can lead to an electric transport channel.By adding a bias potential along the direction of the line defects,we calculate the electric conductivity of bilayer graphene with line defects using the Landauer-Biittiker theory,and show that the channel affects the electric conductivity remarkably by comparing the results with those in a perfect bilayer graphene.This one-dimensional line electric channel has the potential to be applied in nanotechnology engineering.  相似文献   

20.
The quasiparticle band structure of the low temperature orthorhombic phase of NH3BH3 is studied by using the GW approximation. It is found that NH3BH3 is an insulator with a value of the band gap of 5.90 eV with GGA and of 9.60 eV with the GW approximation. Then, the optical properties of NH3BH3 are obtained by the calculation of the dielectric function, corrected by a scissor shift operation corresponding to the GW correction on the band gap. Also, the optical anisotropy in NH3BH3 is analyzed through the refractive index and static dielectric constants along the different crystallographic directions. Finally, it is found that the energy loss function has a prominent peak at 22.26 eV; at these frequencies (above 22.26 eV) NH3BH3 becomes transparent. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号