共查询到20条相似文献,搜索用时 15 毫秒
1.
Thermal and induced flow characteristics of radio frequency surface dielectric barrier discharge plasma actuation at atmospheric pressure 下载免费PDF全文
Thermal and induced flow velocity characteristics of radio frequency(RF) surface dielectric barrier discharge(SDBD)plasma actuation are experimentally investigated in this paper. The spatial and temporal distributions of the dielectric surface temperature are measured with the infrared thermography at atmospheric pressure. In the spanwise direction, the highest dielectric surface temperature is acquired at the center of the high voltage electrode, while it reduces gradually along the chordwise direction. The maximum temperature of the dielectric surface raises rapidly once discharge begins.After several seconds(typically 100 s), the temperature reaches equilibrium among the actuator's surface, plasma, and surrounding air. The maximum dielectric surface temperature is higher than that powered by an AC power supply in dozens of k Hz. Influences of the duty cycle and the input frequency on the thermal characteristics are analyzed. When the duty cycle increases, the maximum dielectric surface temperature increases linearly. However, the maximum dielectric surface temperature increases nonlinearly when the input frequency varies from 0.47 MHz to 1.61 MHz. The induced flow velocity of the RF SDBD actuator is 0.25 m/s. 相似文献
2.
3.
Electric and plasma characteristics of RF discharge plasma actuation under varying pressures 下载免费PDF全文
The electric and plasma characteristics of RF discharge plasma actuation under varying pressure have been investigated experimentally. As the pressure increases, the shapes of charge–voltage Lissajous curves vary, and the discharge energy increases. The emission spectra show significant difference as the pressure varies. When the pressure is 1000 Pa,the electron temperature is estimated to be 4.139 e V, the electron density and the vibrational temperature of plasma are peak4.71×10~(11)cm~(-3) and 1.27 e V, respectively. The ratio of spectral lines I391.4/peak I380.5which describes the electron temperature hardly changes when the pressure varies between 5000–30000 Pa, while it increases remarkably with the pressure below 5000 Pa, indicating a transition from filamentary discharge to glow discharge. The characteristics of emission spectrum are obviously influenced by the loading power. With more loading power, both of the illumination and emission spectrum intensity increase at 10000 Pa. The pin–pin electrode RF discharge is arc-like at power higher than 33 W, which results in a macroscopic air temperature increase. 相似文献
4.
In this paper we report on an experimental study of the characteristics of nanosecond pulsed discharge plasma aerodynamic actuation. The N 2 (C 3 Π u ) rotational and vibrational temperatures are around 430 K and 0.24 eV, respectively. The emission intensity ratio between the first negative system and the second positive system of N 2 , as a rough indicator of the temporally and spatially averaged electron energy, has a minor dependence on applied voltage amplitude. The induced flow direction is not parallel, but vertical to the dielectric layer surface, as shown by measurements of body force, velocity, and vorticity. Nanosecond discharge plasma aerodynamic actuation is effective in airfoil flow separation control at freestream speeds up to 100 m/s. 相似文献
5.
B. Bora H. Bhuyan M. Favre E. Wyndham H. Chuaqui C.S. Wong 《Current Applied Physics》2013,13(7):1448-1453
Plasma parameters from the discharge characteristics of a 13.56 MHz capacitively coupled radio frequency Ar plasma are evaluated on the basis of homogeneous discharge model for wide range of operating pressure. The homogeneous discharge model of capacitively coupled radio frequency discharge is modified to take into account the nonlinear plasma series resonance effect. The effect of drift velocity of the electron due to change in radio frequency electric field and operating pressure is also considered. Considerable dependent of plasma parameters on the drift velocity of the electron as well as on the plasma series resonance effect are observed in low pressure. An irregular variation of calculated plasma density with operating pressure is observed, which is reconfirmed with optical emission spectroscopy. 相似文献
6.
光抽运亚稳态稀有气体激光器利用放电等离子体作为激光的增益介质.为掌握容性射频放电的放电参数对等离子体各项参数的影响的基本规律,利用等离子体发射光谱法研究了氦氩混合气体在不同装置、不同Ar组分、不同气压和不同射频注入功率下的等离子体参数.利用残留水蒸气产生的OH自由基A~2Σ~+→X~2Π的转动光谱分析获得气体温度;利用电子态光谱的玻尔兹曼做图法获得电子激发温度,利用Ar原子696.5 nm谱线的斯塔克展宽获得电子密度.结果表明:气体温度随气压增加略微上升,在一个大气压下改变组分和放电功率,气体温度变化不大;电子激发温度随总气压的下降而上升,且随着Ar组分的增加而略微下降;目前放电条件下的电子密度均在10~(15)cm~(-3)量级;长时间放电监测表明,残留的水蒸气会导致电子温度的下降,从而降低Ar亚稳态的产率. 相似文献
7.
Aspects of the upstream region in a plasma jet with dielectric barrier discharge configurations 下载免费PDF全文
A plasma column with a length of about 65 cm is generated in the upstream region of a plasma jet using dielectric barrier discharge configurations. The effects of experimental parameters such as the amplitude of the applied voltage and the driving frequency are investigated in aspects of the plasma column by the optical method. Results show that both the plasma length and the propagating velocity, as well as the discharge current, increase with the increase in the applied voltage or its frequency. The discharge mechanism is analysed qualitatively based on streamer theory, where photo-ionization is important. Furthermore, optical emission spectroscopy is used to investigate the electric field intensity of the upstream region. 相似文献
8.
Aspects of the dielectric upstream region barrier discharge in a plasma jet with configurations 下载免费PDF全文
A plasma column with a length of about 65 cm is generated in the upstream region of a plasma jet using dielectric barrier discharge configurations. The effects of experimental parameters such as the amplitude of the applied voltage and the driving frequency are investigated in aspects of the plasma column by the optical method. Results show that both the plasma length and the propagating velocity, as well as the discharge current, increase with the increase in the applied voltage or its frequency. The discharge mechanism is analysed qualitatively based on streamer theory, where photo-ionization is important. Furthermore, optical emission spectroscopy is used to investigate the electric field intensity of the upstream region. 相似文献
9.
Study on the transition from filamentary discharge to diffuse discharge by using a dielectric barrier surface discharge device 下载免费PDF全文
Discharge characteristics have been investigated in different gases
under different pressures using a dielectric barrier surface
discharge device. Electrical measurements and optical emission
spectroscopy are used to study the discharge, and the results
obtained show that the discharges in atmospheric pressure helium and
in low-pressure air are diffuse, while that in high-pressure air is
filamentary. With decreasing pressure, the discharge in air can
transit from filamentary to diffuse one. The results also indicate
that corona discharge around the stripe electrode is important for
the diffuse discharge. The spectral intensity of N电介质 表面放电 扩散放电 发射光谱学 dielectric barrier surface
discharge, diffuse discharge, optical emission spectroscopy Project supported by the National
Natural Science Foundation of China (Grant Nos 10575027 and
10647123), the National Science Foundation of Hebei Province, China
(Grant No A2007000134), the Education Department of Hebei Province,
China (Grant No 2006106), 2006-10-24 Discharge characteristics have been investigated in different gases under different pressures using a dielectric barrier surface discharge device. Electrical measurements and optical emission spectroscopy are used to study the discharge, and the results obtained show that the discharges in atmospheric pressure helium and in low-pressure air are diffuse, while that in high-pressure air is filamentary. With decreasing pressure, the discharge in air can transit from filamentary to diffuse one. The results also indicate that corona discharge around the stripe electrode is important for the diffuse discharge. The spectral intensity of N+ (391.4nm) relative to N2 (337.1 nm) is measured during the transition from diffuse to filamentary discharge. It is shown that relative spectral intensity increases during the discharge transition. This phenomenon implies that the averaged electron energy in diffuse discharge is higher than that in the filamentary discharge. 相似文献
10.
基于介质阻挡与准直流电弧放电的物理过程, 分析了它们的气动激励机理, 建立了各自的气动激励模型, 并分别研究了它们对低速和超声速流动的激励效果. 结果显示: 介质挡板放电等离子体气动激励机理是改变了连续流体中的三种力, 即由牛顿内摩擦引起的剪切应力、由电动力学引起的体积力及由压力突变引起的冲击力, 其中基于电动力学的体积力效应占主导地位; 临近空间环境中体积力的作用效果更强, 诱导速度更大; 超声速来流下准直流电弧放电气动激励机理主要是等离子体的热阻塞效应, 本文所建立的爆炸丝传热模型可以用于仿真其控制激波的过程; 热电弧对于超声速来流而言就像一个具有一定斜坡角度的虚拟突起, 可用于高超声速飞行器前体激波的控制. 相似文献
11.
In this Letter, a plasma diagnostic technique is reported to evaluate the plasma parameters of capacitively coupled radio frequency argon plasma on the basis of homogeneous discharge model. The technique is implemented for wide range of operating pressure ranging from few mTorrs to atmospheric pressure. Considerable dependence of plasma parameters on the plasma series resonance effect and the drift velocity of the electron for low pressure plasma and on the ion density for atmospheric pressure plasma jet were observed. 相似文献
12.
在石英毛细管内利用两个边缘锋利的中空针型电极间的放电形成了63 cm长的大气压弧光等离子体.通过记录放电图片和测量电流-电压特征波形及伏安特性曲线的方法对管内等离子体从反常辉光状态过渡至超长弧光状态的过程做了细致的研究,发现管内等离子体在弧光状态下的电子密度不低于1014 cm-3.另外,还进一步考察了两电极的间距和电源工作频率对放电伏安特性的影响以及通过发射光谱法测得的等离子体气体温度随外加电压的变化规律.当活性气体(氧气)按一定比例混合到氩等离子体中时,通过
关键词:
大气压等离子体
反常辉光放电
弧光放电
发射光谱 相似文献
13.
Wind tunnel experiments on flow separation control of an Unmanned Air Vehicle by nanosecond discharge plasma aerodynamic actuation 下载免费PDF全文
Plasma flow control(PFC) is a new kind of active flow control technology, which can improve the aerodynamic performances of aircrafts remarkably. The flow separation control of an unmanned air vehicle(UAV) by nanosecond discharge plasma aerodynamic actuation(NDPAA) is investigated experimentally in this paper. Experimental results show that the applied voltages for both the nanosecond discharge and the millisecond discharge are nearly the same, but the current for nanosecond discharge(30 A) is much bigger than that for millisecond discharge(0.1 A). The flow field induced by the NDPAA is similar to a shock wave upward, and has a maximal velocity of less than 0.5 m/s. Fast heating effect for nanosecond discharge induces shock waves in the quiescent air. The lasting time of the shock waves is about 80 μs and its spread velocity is nearly 380 m/s. By using the NDPAA, the flow separation on the suction side of the UAV can be totally suppressed and the critical stall angle of attack increases from 20° to 27° with a maximal lift coefficient increment of 11.24%. The flow separation can be suppressed when the discharge voltage is larger than the threshold value, and the optimum operation frequency for the NDPAA is the one which makes the Strouhal number equal one. The NDPAA is more effective than the millisecond discharge plasma aerodynamic actuation(MDPAA) in boundary layer flow control. The main mechanism for nanosecond discharge is shock effect. Shock effect is more effective in flow control than momentum effect in high speed flow control. 相似文献
14.
利用水电极介质阻挡放电装置,采用电学方法和发射光谱,研究了空气中介质阻挡放电从微放电丝模式向均匀放电模式转化的过程. 结果表明,大气压下增大外加电压或者电压一定减小气压,放电都能够从微放电丝模式过渡到均匀模式. 高气压下放电为流光击穿而低气压下为辉光放电. 利用放电发射光谱,研究了高能电子比例随实验参数的变化. 结果表明气压减小时高能电子比例增大,电压增加时高能电子减少. 利用壁电荷理论对以上实验结果进行了定性分析. 结果对介质阻挡均匀放电的深入研究具有重要价值. 相似文献
15.
利用水电极介质阻挡放电装置,采用电学方法和发射光谱,研究了空气中介质阻挡放电从微放电丝模式向均匀放电模式转化的过程. 结果表明,大气压下增大外加电压或者电压一定减小气压,放电都能够从微放电丝模式过渡到均匀模式. 高气压下放电为流光击穿而低气压下为辉光放电. 利用放电发射光谱,研究了高能电子比例随实验参数的变化. 结果表明气压减小时高能电子比例增大,电压增加时高能电子减少. 利用壁电荷理论对以上实验结果进行了定性分析. 结果对介质阻挡均匀放电的深入研究具有重要价值.
关键词:
介质阻挡放电
光学发射谱
微放电丝
均匀放电模式 相似文献
16.
采用相分辨发射光谱法, 对双频容性耦合纯Ar和不同含O2量的Ar-O2混合气体放电等离子体的鞘层激发模式进行了探究. 在射频耦合电源上极板的鞘层区域处观察到两种电子激发模式: 鞘层扩张引起的电子碰撞激发模式和二次电子引起的电子碰撞激发模式; 并发现这两种激发模式均受到低频射频电源周期的调制. 在纯Ar放电等离子体中, 两种激发模式的激发轮廓相似; 而在Ar-O2混合气放电等离子体中, 随着含O2量的增加, 二次电子的激发轮廓变弱. 此外, 利用相分辨发射光谱法对不同含O2量的Ar-O2混合气放电下Ar的 750.4 nm谱线的平均低频电源周期轴向分布进行了研究, 得到了距耦合电源上极板约3.8 mm处为双频容性耦合射频等离子体的鞘层边界.
关键词:
双频容性耦合等离子体
等离子体鞘层
发射光谱 相似文献
17.
《等离子体物理论文集》2017,57(4):182-189
This paper deals with an optical emission spectroscopy study of a diffuse coplanar surface barrier discharge (DCSBD ) in air at atmospheric pressure. The main aim of this study was to verify the areal homogeneity of the generated plasma, which is important for many applications like treatment of nonwoven fabrics, glass, metals, polymers, foils, and so on. Optical emission spectra of DCSBD plasma in air were measured for three different frequencies (15, 30, and 50 kHz ) of the applied voltage. Comparison of the calculated rotational and vibrational temperatures was carried out, and areal homogeneity of plasma was proved. Electrical parameters of discharge such as the plasma power using the area of the Lissajous figures and energy transfer efficiency to the discharge were also investigated. The effective thickness of plasma layer as a function of the input power was measured. 相似文献
18.
结合NS-DBD实验数据和理论分析, 建立NS-DBD单区非均匀唯象学模型, 旨在通过合理的模型进行流动控制仿真, 揭示流动控制机理. 在平板无来流时, 运用单区非均匀唯象学模型, 通过引入涡量输运方程, 求解涡量方程各项, 分析展向涡形成机理. 展向涡主要是由压力升诱导激励区压力梯度和密度梯度的不正交性产生的, 其次是激励区附近流场的对流引起的涡量转移. 圆柱上的激励仿真得到与实验一致的压缩波结构和冲击波位置, 验证了模型合理性. NACA 0015翼型大迎角分离控制的仿真表明, 激励诱导展向涡促使主流和分离流相互作用, 使分离点移向下游; 脉冲激励频率通过诱导展向涡的数量对流动分离产生不同的作用效果, 本文最佳的无量纲激励频率为6. 相似文献
19.
Properties of surface dielectric barrier discharge plasma generator for fabrication of nanomaterials
This paper presents surface dielectric barrier discharge plasma generators as an efficient source of low-energy ions. Either positive or negative ions can be extracted from a plasma cloud with an external DC field created by the third electrode. Three different cross-section geometries of DBD generators were analyzed, simulated and fabricated. Currents of ions extracted from the plasma cloud were measured and the results were discussed. It was demonstrated that if the third electrode consists of liquid–gas interface, the presented arrangement can be used as a versatile reactor for nanomaterial synthesis (on the example of the synthesis of silver nanoparticles). 相似文献