首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The binding energy and wavefunctions of the 1s, 1p, 1d and 1f energy states of a spherical quantum dot (QD) with parabolic potential were calculated by using a method which is a combination of the quantum genetic algorithm (QGA) and the Hartree–Fock–Roothaan (HFR) approach. In addition, the linear and the third-order nonlinear optical absorption coefficients based on optical transitions in QDs with and without impurity were calculated. The results show that the parabolic potential has a great effect not only on the binding energies and but also on the optical absorption coefficients. Moreover, the calculated results also reveal that the linear and nonlinear optical absorption coefficients are strongly affected by the existence of impurity and the incident optical intensity.  相似文献   

2.
在有效质量近似下,利用量子力学的密度矩阵理论,采用无限深势阱模型,从理论上研究了ZnS/CdSe柱型核壳结构量子点中线性和三阶非线性光吸收系数。导出了柱型量子点中线性和三阶非线性光学吸收系数的解析表达式,分析了该系统在不同条件下线性和三阶非线性光吸收系数与入射光频率之间的关系。改变系统的参数,该系统的光吸收系数呈规律性变化。计算结果表明:弛豫时间τ、入射光强I和壳半径R2对系统的吸收系数α有很大的影响,从而为实验上研究核壳结构量子点的非线性光学效应提供了必要的理论依据。  相似文献   

3.
The optical absorptions of an exciton with the higher excited states in a disc-like quantum dot are investigated. Calculations are made by using the method of numerical diagonalization of Hamiltonian matrix within the effective-mass approximation. With typical semiconducting GaAs based materials, the linear, third-order nonlinear, total optical absorption coefficients and refractive index changes have been calculated for the s–p, p–d, and d–f transitions. The results show that as the angular momentum quantum number of transitions increases, the absorption peaks shift towards lower energies and the absorption intensities increase.  相似文献   

4.
Optical absorption coefficients and refractive index changes associated with intersubband transition in a parabolic cylinder quantum dot are theoretically investigated. In this regard, the electronic structure of the dot is studied using the one band effective mass theory, and by means of the compact-density matrix approach the linear and nonlinear optical absorption coefficients and refractive index changes are calculated. The effects of the size of the dot, optical intensity and electromagnetic field polarization on the optical absorption coefficient and refractive index changes are investigated. It is found that absorption and refractive index changes are strongly affected not only by the size of the dot but also by optical intensity and the electromagnetic field polarization.  相似文献   

5.
In the effective mass approximation, we calculated the binding energy and wave function for the 1s-, 1p-, 1d- and 1f-states of a spherical quantum dot (QD) with parabolic potential by using a combination of quantum genetic algorithm (QGA) and Hartree-Fock-Roothaan (HFR) method. In addition, we also investigated the linear and the third-order nonlinear optical absorption coefficients as a function of the incident photon energy for the 1s-1p, 1p-1d and 1d-1f transitions. Our results are shown that the existence of impurity has great influence on optical absorption coefficients. Moreover, the optical absorption coefficients are strongly affected by the incident optical intensity, relaxation time, parabolic potential and dot radius.  相似文献   

6.
In this work electronic structure, the linear and the third-order nonlinear refractive index changes as well as optical absorption coefficients of a two-dimensional hexagonal quantum dot are investigated. Energy eigenvalues and eigenfunctions of the system are calculated by the matrix diagonalization technique, and optical properties are also obtained using the compact density matrix approach. As our results indicate, both the dot size and the confinement potential have a great influence on the intersubband energy intervals, the transition probability and consequently, the linear and the third-order nonlinear refractive index changes and optical absorption coefficients.  相似文献   

7.
Simultaneous effects of an on-center hydrogenic impurity and band edge non-parabolicity on intersubband optical absorption coefficients and refractive index changes of a typical GaAs/Al x Ga 1 x As spherical quantum dot are theoretically investigated,using the Luttinger-Kohn effective mass equation.So,electronic structure and optical properties of the system are studied by means of the matrix diagonalization technique and compact density matrix approach,respectively.Finally,effects of an impurity,band edge non-parabolicity,incident light intensity and the dot size on the linear,the third-order nonlinear and the total optical absorption coefficients and refractive index changes are investigated.Our results indicate that,the magnitudes of these optical quantities increase and their peaks shift to higher energies as the influences of the impurity and the band edge non-parabolicity are considered.Moreover,incident light intensity and the dot size have considerable effects on the optical absorption coefficients and refractive index changes.  相似文献   

8.
A investigation of the linear and nonlinear optical properties for intersubband electronic transitions associated with a biexciton in a quantum dot has been performed by using the method of few-body physics. The optical absorption coefficients and the refractive index changes have been examined based on the computed energies and wave functions. It is over two orders of magnitude higher than that obtained in an exciton quantum dot. The results show that the optical absorption saturation intensity can be controlled by the confinement potential frequency and the relaxation time.  相似文献   

9.
Using exact diagonalization techniques, the low-lying states of an exciton, and the linear and nonlinear optical absorptions in a disc-like quantum dot are theoretically studied. The numerical results for the typical GaAs material show the so-called quantum size effect. Also, our study is restricted on the transition between the S state (L = 0) and the P state (L = 1). The optical absorption coefficients are greatly enhanced because of the induced size confinement. Meantime, we find that the total optical absorption coefficient is about two times bigger than that obtained by without considering exciton effects. Additionally, the optical absorption saturation intensity can be controlled by the incident optical intensity I.  相似文献   

10.
Li Zhang  K.X. Guo 《Physics letters. A》2013,377(34-36):2239-2244
Based on the density matrix approach and the perturbation treatment, the polaronic effect on the linear and nonlinear intersubband optical absorption coefficients in quasi-one-dimensional wurtzite nanowires (NWs) is investigated. The simple analytical formulas for polaronic states and the linear and nonlinear optical absorption coefficients in the NW systems are also deduced. Numerical calculation on a freestanding wurtzite GaN NW is performed. The polaronic effect and quantum size effect as well as the influence of incident optical intensity on the optical absorption properties are analyzed and discussed. The results show that, the polaronic effect results in significant increase of the absorption coefficients, and obvious decrease of saturation absorption intensity. In order to observe strong optical absorption, a nitride NW with relative small radius should be chosen. Moreover, a comparison with the situation of GaN-based quantum well systems is also done, and the profound physics is analyzed reasonably.  相似文献   

11.
In this study, a detailed investigation of the size effects of an exciton–acceptor complex in a disc-like quantum dot has been carried out by using the matrix diagonalization method and the compact density-matrix approach. We calculate the binding energy and the oscillator strength of intersubband quantum transition from the ground state into the first excited state as a function of the dot radius. Based on the computed energies and wave functions, the linear, third-order and total optical absorption coefficients as well as the refractive index have been examined between the ground and the first excited states. We find that the all absorption spectra and refractive index changes are strongly affected by the quantum dot size. However, for two cases of a smaller dot and a larger dot, the results of quantum size effects on the optical absorptions are opposite.  相似文献   

12.
In this study, we have calculated the linear, nonlinear and total refractive index changes and absorption coefficients for the transitions 1s–1p, 1p–1d and 1d–1f in a spherical quantum dot with parabolic potential. Quantum Genetic Algorithm (QGA) and Hartree–Fock–Roothaan (HFR) method have been employed to calculate the wavefuctions and energy eigenvalues. The results show that impurity, dot radius, stoichiometric ratio, incident optical intensity and carrier density of the system have important effects on the optical refractive index changes and absorption coefficients. Also, we find that as the transitions between orbitals with big l value move to lower energy region in case with parabolic potential, in case without parabolic potential these transitions move to higher energy region.  相似文献   

13.
Using the matrix diagonalization method and the compact density-matrix approach, we studied the combined effects of hydrostatic pressure and temperature on the electronic and optical properties of an exciton-donor complex in a disc-shaped quantum dot. We have calculated the binding energy and the oscillator strength of the intersubband transition from the ground state into the first excited state as a function of the dot radius. Based on the computed energies and wave functions, the linear, third-order nonlinear and total optical absorption coefficients as well as the refractive index have been examined. We find that the ground state binding energy and the oscillator strength are strongly affected by the quantum dot radius, hydrostatic pressure and temperature. The results also show that the linear, third-order nonlinear and total absorption coefficients and refractive index changes strongly depend on temperature and hydrostatic pressure.  相似文献   

14.
The present work investigates the nonlinear optical properties of a GaN quantum dot in the disk limit via the exciton and biexciton states using the compact density matrix formalism. Based on this model, we calculate the ground state energy of the exciton and biexciton states by the variation method, within envelope function and effective mass approximations. Linear and nonlinear optical absorption (α (1), α (3)) and oscillator strengths attributed to the optical transitions are obtained. The details of the behaviour of α (1) and α (3) around the resonance frequencies and for different quantum dot geometries are presented. It is found that the size of quantum dot and the optical intensity have a remarkable effect on the optical absorption, and the biexcitonic two-photon absorption coefficient(K 2) has also been calculated in this system. The results show that this parameter is strongly affected by the size of the quantum dot.  相似文献   

15.
In this article simultaneous effects of external electric field and spin-orbit interaction on the linear and the nonlinear optical properties of a cubic quantum dot are studied. Based on the non- degenerate perturbation method, energy eigenvalues and eigenfunctions of the system under the influence of spin-orbit interaction are calculated. Furthermore, the linear and the nonlinear optical absorption coefficients and refractive index changes are obtained using the compact density matrix approach and iterative method. Our results show that, due to the spin-orbit interaction, resonant peak values of the optical absorption coefficients and refractive index changes decrease and occur at lower values of the incident photon energy. The variation of these optical parameters depend on the spin-orbit interaction strength, dot dimensions and external electric field.  相似文献   

16.
The linear and nonlinear optical properties of an electron, which is bounded to a Coulomb impurity in a polar semiconductor quantum dot with parabolic confinement in both two and three dimensions, are studied by using the Landau-Pekar variational method and the compact density-matrix approach. With typical semiconducting GaAs-based materials, the linear, third-order nonlinear, total optical absorption coefficients and refractive indexes have been examined. We find that the all absorption spectra and refractive index changes are strongly affected by the electron-LO-phonon interaction. The results also indicate that the polaron effect increases with decreasing dimensionality of a quantum dot.  相似文献   

17.
An investigation of an exciton bound in a parabolic two dimensional quantum dot by a donor impurity has been carried out by using the matrix diagonalization method and the compact density-matrix approach. The linear, third-order nonlinear, total optical absorption coefficients and refractive index changes have been calculated for the s-p, p-d, and d-f transitions. The results show that the parabolic potential has a great effect on the optical absorptions. The calculated results also reveal that as the angular momentum quantum numbers of transitions increase, the optical absorption and refractive index peaks shift towards lower energies and the absorption and refractive index intensities increase.  相似文献   

18.
在有效质量近似下,利用量子力学密度矩阵理论,从理论上研究了考虑极化子效应后核壳量子点中线性、三阶非线性以及总的光吸收系数在不同条件下随入射光能量变化的关系。通过数值计算,分析了电子-LO声子和电子-IO声子相互作用对ZnS/CdSe柱型核壳结构量子点光吸收系数的影响。结果表明,极化子效应对光吸收系数有很大影响,不同声子模式对光吸收系数影响大小不同。考虑电子-LO声子后,光吸收系数被大大提高。另外,入射光强和弛豫时间对系统的吸收系数也有很大影响。  相似文献   

19.
The effect of longitudinal optical phonon field on the ground state and low lying-excited state energies of a hydrogenic impurity in a Zn1−xCdxSe/ZnSe strained quantum dot is investigated for various Cd content using the Aldrich-Bajaj effective potential. We consider the strain effect considering the internal electric field induced by the spontaneous and piezoelectric polarizations. Calculations have been performed using Bessel function as an orthonormal basis for different confinement potentials of barrier height. Polaron induced photoionization cross section of the hydrogenic impurity in the quantum dot is investigated. We study the oscillator strengths, the linear and third-order nonlinear optical absorption coefficients as a function of incident photon energy for 1s-1p and 1p-1d transitions with and without the polaronic effect. It is observed that the potential taking into account the effects of phonon makes the binding energies more than the obtained results using a Coulomb potential screened by a static dielectric constant and the optical properties of hydrogenic impurity in a quantum dot are strongly affected by the confining potential and the radii. It is also observed that the magnitude of the absorption coefficients increases for the transitions between higher levels with the inclusion of phonon effect.  相似文献   

20.
Semi oblate and semi prolate are among the most probable self-organized nanostructures shapes. The optoelectronic properties of such nanostructures are not just manipulated with the height and lateral size but also with the wetting layer element. The practical interest of derivatives of germanium and silicon has a great important role in optoelectronic devices. This study is a contribution to the analysis of linear and nonlinear optical properties of Si0.7Ge0.3/Si. In the framework of the effective mass approximation, we solve numerically the Schrödinger equation relative to one particle confined in Si0.7Ge0.3/Si semi prolate and semi oblate quantum dots by using the finite element method and by taking into consideration the effect of the wetting layer. The energy spectrum of the lowest states and the dipolar matrix for the fourth allowed transitions are determined and discussed. We also calculate the detailed optical properties, including absorption coefficients, refractive index changes, second and third harmonic generation as a function of the quantum dot sizes. We found that with the change in the size of prolate and oblate quantum dots, there is a shift in the resonance peaks for the absorption coefficient and refractive index. It is due to the modification in the energy levels with changing size. The study proves a redshift in the second harmonic generation and third harmonic generation coefficients with an increase in the height/radius of the oblate/prolate quantum dot, respectively. We also demonstrated the variation of wavefunction inside the quantum dot with the change in wetting layer thickness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号