首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 129 毫秒
1.
The water states in perfluorosulfonic acid membranes (Nafion®) were evaluated using low temperature differential scanning calorimetry (DSC) on both vapor and liquid penetrants. At low sorption levels, water sorbed in Nafion existed in the nonfreezable bound state until a critical value was reached. The critical, nonfreezable water content corresponded to 4.8 water molecules per sulfonate group. Beyond that critical value, additional sorbed water was partitioned between freezable and nonfreezable bound states. The freezable water was in intermediate or freezable bound water state with subzero fussion temperatures. The observed water fusion enthalpy for every additional gram of sorbed water was less than that of pure water. The partition coefficient (K) between the nonfreezable bound state and the freezable state water was estimated as 0.755. The critical nonfreezable water content (W c ) and the partition coefficient for vapor permeate in Nafion were similar to those of liquid water penetrant. These findings allow one to estimate the bound and freezable water distribution in Nafion. The K value, in conjunction with the critical water content (W c ), can be used as a quantitative indicator to characterize water states in ionomers. This model may serve as the basis to account for water transport, ionic conductivity, and proton transfer changes in various solid electrolyte membranes.  相似文献   

2.
The permeant states of various solvents in poly(dimethyl siloxane) (PDMS) film were evaluated using low temperature differential scanning calorirnetry (DSC) on both vapor and liquid penetrants. Water, cyclohexane, benzene, toluene, and m‐xylene may be present in the freezable and nonfreezable state. At low sorption levels, solvents sorbed in PDMS were in the nonfreezable state until a threshold value was reached. Beyond that, the increased solvent sorption values all occurred in a freezable state. The partition pattern between the freezable and nonfreezable states for a vapor penetrant showed an identical trend with that for the liquid penetrant. The maximum nonfreezable amount of solvent in PDMS depended on the solvent's chemical compatibility with the membrane but not on the sorption temperature. Compared with that at 10°C, the higher solvent solubility at 25°C was due to the increase in the freezable solvent content without any change in the maximum nonfreezable content. The permeant states for equilibrium and nonequilibrium samples did not differ from one another.  相似文献   

3.
Broadband dielectric spectra of a variety of aqueous solutions are evaluated as to indications of water that may be considered bound. Static permittivity decrements due to depolarizing internal electric fields, from kinetic depolarization, as well as from dielectric saturation are discussed. The latter effect reflects the preferential orientation of water permanent dipole orientations within strong Coulombic field of small ions, especially multivalent cations. Such water may be considered bound even though rapid rotations around the orientation of the electric dipole moment are definitely possible and also a fast exchange of water molecules between the hydration region and the bulk may take place. Water exhibiting large dielectric relaxation times, as typical for regions with large local concentration of foreign matter, may also be named bound. However, no clear evidence for interaction energies exceeding the hydrogen bond energy of pure water has been found. Rather enhanced relaxation times at low water content reflect the small concentration of hydrogen bonding sites and thus low probability density for the formation of a new hydrogen bond. Potential interferences of the water relaxation with relaxations from other molecules or from ionic structures are mentioned briefly.  相似文献   

4.
A solution model is discussed which allows the microwave part of the permittivity spectrum of aqueous solutions to be related to characteristics of the hydration water. The parameters, which can be derived from measured dielectric spectra thereby are the hydration water relaxation time, the number of hydration water molecules per molecule of solute, the static orientational polarizability of the hydration water, and a quantity, which refers to the distribution of hydration water relaxation times. The (continuum) model, appropriate for solutions of (nearly) spherically shaped solute particles, has regard to internal electric fields resulting from polarization charges at interfaces. Possible errors in the parameter values are indicated, which may arise if the internal fields are only incompletely taken into account. Previously measured spectra for a series of aqueous solutions of 1,4-diazabicyclo[2,2,2]octane have been evaluated on the basis of the present model. The results for these (favourable) solutions are presented to show, that the found dependence of the parameter values on solute concentration is consistent with the idea of the proposed hydration model.  相似文献   

5.
The recrystallization of silver sulfide Ag2S nanoparticles has been studied and the range of the thermal stability of the nanoparticle sizes has been determined. Nanopowders Ag2S with particle sizes of 45–50 nm were obtained by chemical deposition from aqueous solutions. To study the thermal stability of the Ag2S nanoparticle sizes, the nanocrystalline powders have been annealed in a vacuum of 0.01 Pa on heating from room temperature to 493 K and in argon at 623 K. Annealing up to a temperature of 453 K leads to insignificant nanoparticle growth and annealing of microstrains, which allows one to consider this temperature range as the region of thermal stability of the silver sulfide nanostate. The temperature range from 450 to 900 K, in which the particle size increases by a factor of 3–6, corresponds to the temperature of collective recrystallization of the silver sulfide nanopowder.  相似文献   

6.
Performance analysis of a double-effect absorption heat pump system has been done for water-four working pairs (or mixture) by computer simulation. The coefficient of performance and mass flow ratio are investigated to compare these aqueous solutions [waterLiCl, waterLiBrLiBr waterLiClCaCl2Zn(NO3)2] which was developed for only cooling, with conventional waterLiBr solution, based on mass, material and heat balance equations for each part.From this analysis, it is found that the performances of the new aqueous solutions are better than that of LiBrwater solution not only in cooling systems, but also in heating systems, although the operating temperature ranges of these new aqueous solutions are very narrow in heating. Theoretical thermodynamic performance data can be used and are given here by design data.  相似文献   

7.
These studies demonstrate possible connection between a decreased affinity of human serum albumin (HSA) in patients with liver and renal failures and changes of the HSA hydration state. The relaxation times,T 1 andT 2, of water protons in aqueous protein solution depend on the interaction of water molecules with biopolymer macromolecules. We compared these relaxation times for aqueous solutions of HSA from healthy and sick donors. For latter the amount and correlation time of the bound water are higher than those in healthy donors HSA solutions. The influence of long-chain fatty acids on the albumin hydration was found to be small.  相似文献   

8.
1-羟乙基-3-甲基咪唑氯盐([HOEtMIM][Cl])是一种亲水性极强的离子液体,与水可以组成吸收式制冷工质对,具有良好的工业应用前景.在制冷工程应用中,离子液体水溶液的低温特性研究非常重要,包括低温段的水溶液蒸汽压数据和凝固特性,而[HOEtMIM][Cl]的相关研究缺乏.本文对水的质量分数分别为17.10%、24.29%、38.03%、49.89%、69.94%,温度范围(278.15K~408.15K)的[HOEtMIM][Cl]水溶液的汽液相平衡进行了测定;并对水的质量分数范围为1.3%~90.0%,温度范围为150K~360K的离子液体水溶液的凝固特性进行了测定,揭示其在低温应用时可能出现的固化问题.获得的蒸汽压及凝固特性数据对该离子液体水溶液应用于制冷系统设计具有重要意义.  相似文献   

9.
Hydration water can even decide the physicochemical properties of hydrated organic molecules. However, by far the most important hydration number for organic molecules, in particular polyethylene glycol which we are concerned with here, usually suffers from a large discrepancy. Here, we provide a scheme for accurate and unambiguous quantification of the hydration number based on the universal water-content dependence of glass transition temperature for aqueous solutions, testified by experimental results for polyethylene glycol molecules of a molar weight ranging from 200 to 20000.Moreover, we also clarify the fundamental misunderstanding lying in the definition and quantification of hydration water for PEG molecules in the literature, therein the hydration number for PEG in water-rich solutions has been determined at a critical concentration, across which the properties of the solution display obviously distinct water-content dependence.  相似文献   

10.
The microwave part of the dielectric spectrum (ν ? 1 GHz) is considered of aqueous phospholipid solutions in the limit of high water content. A continuum model is presented which allows to calculate in the water relaxation region the frequency-dependent complex permittivity of solutions in which the bilayers form globular single-walled vesicles as well as multilamellar liposomes. The model is not only capable of explaining the strikingly small values of the extrapolated static permittivity and of the main dielectric relaxation time which became evident in many measurements on colloidal aqueous solutions of phospholipids. It also allows the positive and negative step-like changes in the dielectric properties of solutions, which have been found at the main (order-disorder) phase transition temperature of the bilayers, to be explained by dimensional changes as resulting from vesicle growth and fusion.  相似文献   

11.
12.
It has been known that some polyelectrolyte systems, e.g., betaine polymer and polycations, have an upper critical solution temperature (UCST) in water while polyanions seldom show such a temperature-dependent phase separation. Recently we have found a significant counterion- and solvent-specific UCST-type behavior for alkali metal poly(acrylate)s (PAAM) in aqueous organic solvent mixtures. Namely, the reduced viscosity significantly increased with increasing temperature which was ascribed to disintegration of the ion-clusters or the aggregated ion-pairs formed at the lower temperature. In the present study, we prepared PAAM gel samples by irradiating the aqueous solutions with γ-rays in variable doses to find that a significant gel swelling was induced by a temperature jump from 5 to 40°C in various kinds of aqueous organic solvent mixtures. The UCST-type behavior and the counterion- and solvent-specificities for the gel swelling turned out to be parallel to those for the corresponding solution systems. In addition to these expected results, an appreciable LCST-type deswelling was unexpectedly observed for collapsed gels in a relatively higher solvent concentration region. Further, the γ-ray doses, i.e., the degree of crosslinking, proved to affect the UCST behavior; the gel swelling ratio was more significant for gels prepared with higher doses.  相似文献   

13.
In this paper, we propose a method to generate gold nanoparticles capable of absorbing near infrared light (NIR) radiation through a photochemical reaction. This approach does not require the use of either surfactants or polymers, reducing the difficulties that may arise in further chemical modifications for the gold nanoparticles. The gold nanoparticles with either triangular or hexagonal shapes were generated using the photo-reduction method, mixing hydrogen tetrachloroaurate with sodium oxalate, a reducing agent, in aqueous solution under illumination of a mercury lamp (λmax = 306 nm) for more than 10 min. The size of the gold nanoparticles varies from 25 to 200 nm, which mainly depends on the duration of light illumination and the concentration of sodium oxalate. Furthermore, we demonstrate that the presence of the gold nanoparticles in aqueous solutions can effectively elevate the temperature of the solutions under irradiation of NIR light (808 nm) within a few minutes. The gold nanoparticles can be potentially used as suitable photothermal agents for hyperthermia.  相似文献   

14.
We have used analytical laser induced liquid beam desorption in combination with high resolution mass spectrometry ( mm≥ 1000) for the study of protonated amino acids (ornithine, citrulline, lysine, arginine) and their non-covalently bound complexes in the gas phase desorbed from water solutions. We report studies in which the desorption mechanism has been investigated. The results imply that biomolecule desorption at our conditions is a single step process involving laser heating of the solvent above its supercritical temperature, a rapid expansion, ion recombination and finally isolation and desorption of only a small fraction of preformed ions and charged aggregates. In addition, we report an investigation of the aqueous solution concentration and pH-dependence of the laser induced desorption of protonated species (monomers and dimers). The experimental findings suggest that the desorption process depends critically upon the proton affinity of the molecules, the concentration of other ions, and of the pH value of the solution. Therefore the ion concentrations measured in the gas phase very likely reflect solution properties (equilibrium concentrations). Arginine self-assembles large non-covalent singly protonated multimers (n = 1...8) when sampled by IR laser induced water beam desorption mass spectrometry. The structures of these aggregates may resemble those of the solid state and may be preformed in solution prior to desorption. A desorption of mixtures of amino acids in water solution enabled us to study (mixed) protonated dimers, one of the various applications of the present technique. Reasons for preferred dimerization - leading to simple cases of molecular recognition - as well as less preferred binding is discussed in terms of the number of specific H-bonds that can be established in the clusters.  相似文献   

15.
Kawai K  Suzuki T 《Cryo letters》2006,27(2):107-114
The freeze-concentrated glass-like transition temperatures (Tg2), so-called ante-melting temperature or ice-melting temperature of tripolyphosphate-sugar aqueous solutions prepared with various sugars (ribose, sorbitol, glucose, maltose, sucrose, and trehalose) were investigated by using differential scanning calorimetry to evaluate the effect of tetrasodium tripolyphosphate on the Tg2 of sugar aqueous solutions. The Tg2 of tripolyphosphate-sugar aqueous solutions were higher than those of tripolyphosphate or sugar aqueous solutions and converged in a narrow temperature range of 238 to 243 K. Furthermore, a study of the Tg2 of tripolyphosphate-glucose aqueous solutions adjusted to various ratios indicated that the Tg2 increment depended on the ratio and that another glass-like transition appeared at a temperature below the Tg2 by increasing the ratio of tripolyphosphate. The drastic increase in the Tg2 of sugars with the addition of tripolyphosphate will be useful for improving the cryostabilization of biomaterials.  相似文献   

16.
A 2-D theoretical model was derived to present the temperature distribution of falling liquid films flowing over a vertical heated/cooled plate with constant temperature. And the temperature gradients for different flow rates and fluids were also discussed for different liquid films. The temperature distributions for liquid films of water, ethanol aqueous solutions and glycerol aqueous solutions were experimentally investigated with a sensitive thermal imaging system. It is found that the surface temperature of a film flowing over a vertical heated solid plate has a characteristic relationship with the film flow distance. A lower flow rate of the film or a higher temperature of the wall generally leads to a higher surface temperature in the film inception. For films of glycerol aqueous solutions under the same heating conditions, a lower glycerol concentration causes a higher surface temperature of the film, due to the decrease of the liquid viscosity, whereas the ethanol concentration is found to have little influence on the temperature distribution of the film surface. Comparisons of the experimental data and the theoretical model show that the model can adequately describe the surface temperature distribution of a heated falling liquid film.  相似文献   

17.
The article presents the results of fluorescence analyses of 2-methylamino-5-(2,4-dihydroxyphenyl)-1,3,4-thiadiazole (MDFT) in an aqueous environment. MDFT dissolved in aqueous solutions with a pH value in the range from 1 to 4.5 yielded an interesting effect of two clearly separated fluorescence emissions. In turn, a single fluorescence was observed in MDFT dissolved in water solutions with a pH value from 4.5 to 12. As it was suggested in the previous investigations of other 1,3,4-thiadiazole compounds, these effects may be associated with conformational changes in the structure of the analysed molecule accompanied by aggregation effects. Crystallographic data showed that the effect of the two separated fluorescence emissions occurred in a conformation with the –OH group in the resorcyl ring bound on the side of the sulphur atom from the 1,3,4-thiadiazole ring. The hypothesis of aggregation as the mechanism involved in the change in the spectral properties at low pH is supported by the results of (Time-Dependent) Density Functional Theory calculations. The possibility of rapid analysis of conformational changes with the fluorescence spectroscopy technique may be rather important outcome obtained from the spectroscopic studies presented in this article. Additionally, the presented results seem to be highly important as they can be easily observed in solutions and biologically important samples.  相似文献   

18.
ABSTRACT

The aim of the present work was to test low-resolution NMR to characterize and quantify the state of water in some clay materials such as illite, montmorillonite, and bentonite with water content and in a compacted state. Low-field 1H-NMR spectroscopy (0.54 T) was used to determine the most mobile fraction of water in different types of clay materials by analyzing free induction decay (FID) and Carr-Purcell-Meiboom-Gill (CPMG) relaxation curves at 20°C, ?7°C, and ?25°C. Results have shown that a fast exchange occurs between the first bound monolayer of water and the following ones for illite, montmorillonite, and bentonite; a multiexponential decay of some CPMG relaxation curves was also observed. FID measurements at ?25°C showed that 83% of the water in illite (41% water content), 44% in montmorillonite (31% w.c.), and 52% in bentonite (27% w.c.) is frozen at this temperature. Treatment of signals obtained with bentonite compacted in capillaries (28% w.c.) was complicated by a signal coming from the capillaries themselves and an increase in internal magnetic field gradients, which led to a dual quantification whose most likely result is 39% of freezable water.  相似文献   

19.
Water molecule mobility in ion-containing and nonionic aqueous solutions of β-cyclodextrin was studied by quasielastic neutron scattering (QENS). The total self-diffusion coefficients and their components corresponding to the contributions from collective (Lagrange type) and single-particle (jump diffusion) parts of molecular motions were determined. From the data obtained, one can conclude that the molecular mobility of free water in nonionic aqueous solutions of β-cyclodextrin with guest molecules (2-aminopyridine) proceeds by a single-particle mechanism. The addition of Pb2+ ions into the solution leads to increase in self-diffusion coefficients and growth of a bound water fraction.  相似文献   

20.
周邦新  颜鸣皋 《物理学报》1963,19(10):633-648
本文研究了微量磷对冷轧纯铜再结晶的影响。当磷原子主要是溶解在铜中时,大大提高了再结晶温度,增加了再结晶激活能,阻止了立方结构的形成,改变了再结晶结构;但出氧化磷状态存在于铜中时,对以上各方面的影响就不很明显。所有样品的再结晶结构,都与加工结构中的某一种取向相同或接近,并且与主要加工结构间存在着沿<111>相差20—45°的几何关系。分析从金相及X光研究后得到的结果,认为在这种情况下,同位再结晶和选择性生长是再结晶结构形成的过程。 关键词:  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号