首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
We calculated diffraction efficiencies of subwavelength grating (SWG) structures for various optical device applications by using a rigorous coupled-wave analysis method. The geometrical effects, such as grating shape, height, and period, were investigated in order to obtain better antireflection performance. Cone shaped SWG structures with a taller height provide lower reflectance over a broadband wavelength range compared to that of flat surface and nanorod. It was found that the low reflection regions are quite related with the grating period and the refractive index of substrate materials. From the comparison between external and internal reflection of SWG structures, we also showed that the internal reflection requires shorter grating period than the case of external reflection to acquire broadband antireflection properties.  相似文献   

2.
3.
A cholesteric liquid crystal can be considered as a one-dimensional photonic crystal with a refractive index that is regularly modulated along the helix axis because of the particular arrangement of the molecules. The result is that the propagation of light is suppressed for a particular range of wavelengths (bandgap). A polymer-stabilized cholesteric liquid crystal (PSCLC), which is obtained by in situ photopolymerization of reactive liquid-crystal molecules in the presence of non-reactive liquid-crystal molecules in an oriented Bragg planar texture, is elaborated by combining the UV-curing with a thermally induced pitch variation. As a consequence, it is shown here that memory effects are introduced into the characteristics of the reflection band of the material at room temperature. In the visible spectrum, the reflection bandwidth can be tuned in agreement with the thermal ramp and broadened. In addition, the bandgap filters can be switched between broadband reflective, scattering and transparent states by subjecting them to an electric field. Related application fields of these functional materials are switchable smart windows for the control of the solar-light spectrum and white-or-black polarizer-free reflective displays.  相似文献   

4.
Due to their helicoidal structure, cholesteric liquid crystals exhibit remarkable optical properties. Selective light reflection occurs when the pitch (repeat distance) is of the order of the wavelength of incident light propagating along the helix axis. The wavelength bandwidth, due to the optical anisotropy, is typically limited to 50 nm which is insufficient for some applications (full-colors displays, for example). By introducing a pitch gradient in the helix during a novel two-step process in a cholesteric glass, we show that reflection may occur over a wavelength bandwidth greater than 300 nm. First, the reflection bandwidth is adjusted by thermal annealing. Then, the optical properties are permanently stored by quenching the viscous material to a glass at room temperature. The two steps, pitch gradient establishment and film hardening, are independently controlled. The present process exhibits some reversibility and properties intrinsic to the glassy state are gained: laser-writing high resolution full-color images on solid films for image recording or high-density optical data-storage are indeed conceivable. Received 17 December 1998  相似文献   

5.
An analytic approach to the theory of optical defect modes in chiral liquid crystals (CLCs) is developed. The analytic study is facilitated by the choice of the problem parameters. Specifically, an isotropic layer (with the dielectric susceptibility equal to the average CLC dielectric susceptibility) sandwiched between two CLC layers is studied. The chosen model allows eliminating the polarization mixing and reducing the corresponding equations to the equations for light of diffracting polarization only. The dispersion equation relating the defect mode (DM) frequency to the isotropic layer thickness and an analytic expression for the field distribution in the DM structure are obtained and the corresponding dependences are plotted for some values of the DM structure parameters. Analytic expressions for the transmission and reflection coefficients of the DM structure (CLC-defect layer-CLC) are presented and analyzed for nonabsorbing, absorbing, and amplifying CLCs. The anomalously strong light absorption effect at the DM frequency is revealed. The limit case of infinitely thick CLC layers is considered in detail. It is shown that for distributed feedback lasing in a defect structure, adjusting the lasing frequency to the DM frequency results in a significant decrease in the lasing threshold. The DM dispersion equations are solved numerically for typical values of the relevant parameters. Our approach helps clarify the physics of the optical DMs in CLCs and completely agrees with the corresponding results of the previous numerical investigations.  相似文献   

6.
李梓维  胡义涵  李瑜  方哲宇 《中国物理 B》2017,26(3):36802-036802
In the last decade, the rise of two-dimensional(2D) materials has attracted a tremendous amount of interest for the entire field of photonics and opto-electronics. The mechanism of light–matter interaction in 2D materials challenges the knowledge of materials physics, which drives the rapid development of materials synthesis and device applications. 2D materials coupled with plasmonic effects show impressive optical characteristics, involving efficient charge transfer, plasmonic hot electrons doping, enhanced light-emitting, and ultrasensitive photodetection. Here, we briefly review the recent remarkable progress of 2D materials, mainly on graphene and transition metal dichalcogenides, focusing on their tunable optical properties and improved opto-electronic devices with plasmonic effects. The mechanism of plasmon enhanced light–matter interaction in 2D materials is elaborated in detail, and the state-of-the-art of device applications is comprehensively described. In the future, the field of 2D materials holds great promise as an important platform for materials science and opto-electronic engineering, enabling an emerging interdisciplinary research field spanning from clean energy to information technology.  相似文献   

7.
王枫秋 《中国物理 B》2017,26(3):34202-034202
As the fundamental optical properties and novel photophysics of graphene and related two-dimensional(2D) crystals are being extensively investigated and revealed, a range of potential applications in optical and optoelectronic devices have been proposed and demonstrated. Of the many possibilities, the use of 2D materials as broadband, cost-effective and versatile ultrafast optical switches(or saturable absorbers) for short-pulsed lasers constitutes a rapidly developing field with not only a good number of publications, but also a promising prospect for commercial exploitation. This review primarily focuses on the recent development of pulsed lasers based on several representative 2D materials. The comparative advantages of these materials are discussed, and challenges to practical exploitation, which represent good future directions of research, are laid out.  相似文献   

8.
A light-responsive cholesteric liquid crystal (CLC) mixture is tuned with light and applied DC electric field. Interestingly, the reflection of the CLC is red shifted with UV light and blue shifted with applied DC electric fields. UV light exposure induces a red shift in the reflection of the CLC bandgap by as much as 800 nm from the original spectral position. Spatial variations in pitch (and thus reflection color) are shown to blue shift with applied DC field regardless of the photohistory and restore the notch position or image upon removal of the field. The ability to tune the reflection of the CLC bandgap on demand to the red or blue with multiple stimuli is a never before demonstrated effect that could have potential utility in lasing, optical filtering, or data communication applications.  相似文献   

9.
This study investigates whether the salience of the pitch associated with a single reflection of a broadband sound, such as noise, is determined by the monaural information mediated by the stimuli at the two ears, or by the relative locations of the primary sound and the reflection. Pitch strength was measured as a function of the reflection delay and the lateral displacement between the primary sound and the reflection. Thereby, lateral displacement was produced by means of interaural time differences (ITDs) in experiment 1 and interaural level differences (ILDs) in experiment 3. The results from both experiments are in accordance with the assumption that the strength of the pitch associated with a reflection is based on a central average of the internal representations of the stimuli at the two ears. This notion was corroborated by experiment 2, which showed that the results from experiment 1 could be mimicked by simply adding the stimuli from the two ears and presenting the merged stimulus identically to both ears.  相似文献   

10.
光学参数是宏观上表征材料光学性质的物理量,间接反映了材料的微观特性,对光学参数准确的提取可以研究材料的微观性质和机理。近年来,太赫兹时域光谱技术作为一种新兴的光谱分析手段已经成为研究的热点。由于太赫兹辐射能量低并且脉冲宽度窄(皮秒量级),太赫兹时域光谱技术在提取光学参数方面具有无损伤和高时间分辨率的特点。本文总结了基于太赫兹透射和反射时域光谱技术的光学参数提取方法的研究进展,着重阐述了几种经典方法,分析了每种方法的优缺点,并讨论了太赫兹时域光谱技术用于提取材料光学参数的挑战。研究结果表明,透射法适用于对太赫兹波吸收较弱的物质,而反射法则适用于对太赫兹波有强烈吸收的材料。  相似文献   

11.
The unique properties of plasmonic nanostructures have fuelled research based on the tremendous amount of potential applications. Their tailor‐made assemblies in combination with the tunable size and morphology of the initial building blocks allow for the creation of materials with a desired optical response. In this respect, it is crucial to synthesize nanoparticles with a defined shape that are at the core of such developments. Moreover, the interaction of individual nanoparticles with an incident electromagnetic field cannot only be influenced by their structure, but in fact, also by their spatial arrangement to each other. To harvest such opportunities, a profound theoretical understanding of these interactions is required as well as concise strategies to create such ordered assemblies. A quantitative evaluation of their optical properties can only be conducted when discrete structures of high uniformity can be achieved. As a consequence, separation steps have to be applied in order to obtain materials of high purity and uniformity. This also allows for an easier structural characterization of the nanoparticles and their assembled superstructures. In this progress report, an overview about the current development in this field of research is provided.  相似文献   

12.
陈国夫 《物理》2005,34(10):725-730
随着飞秒(1fs=1×10-15s)激光技术的不断成熟,飞秒激光器不但在实验室能产生小于10fs的光脉冲,啁啾放大后的飞秒光脉冲的聚焦峰值功率密度可达到1021W/cm2以上,而且飞秒激光系统已实现全固体、小型化结构,其稳定性和可靠性大大提高,因此在科学技术研究中的应用越来越广.文章重点介绍飞秒激光的主要特性和它与透明介质[如熔融石英、光学玻璃、对激光透明的高分子聚合物(PMMA)等]的相互作用过程,分析它们之间的非线性相互作用过程引起的材料特性或结构变化的物理机制和可能的应用,尤其在高密度大容量三维存储和微光子器件制造等方面的应用可能性.  相似文献   

13.
We demonstrate time-domain attenuated total reflection spectroscopy in terahertz frequency region. Geometry of the reflection measurement is well optimized to obtain accurate optical constants of water or aqueous biomolecular system. We determine the dielectric constants of distilled water and sucrose solutions with this technique. This technique will open new aspects in the research field of biological systems in water.  相似文献   

14.
Optics and Spectroscopy - Specific features of the optical properties of cholesteric liquid crystals (CLCs) in an external static magnetic field have been studied theoretically taking into account...  相似文献   

15.
光盘道间距及其信道轨迹长度的测量   总被引:1,自引:0,他引:1  
基于光盘的结构,将光盘抽象为一个反射光栅的模型,从而测出了光盘的道间距及信道轨迹长度.  相似文献   

16.
The optical properties of a stack of metamaterial-based cholesteric liquid crystal (CLC) layers and isotropic medium layers are investigated. The problem is solved by a modification of Ambartsumian’s layer addition method. CLCs with two types of chiral nihility are defined. The peculiarities of the reflection spectra of this system are investigated and it is shown that the reflection spectra of the stacks of CLC layers of these two types differ from each other. Besides, in contrast to the single CLC layer case, these systems have multiple photonic band gaps. There are two types of such gaps: those selective with respect to polarization of the incident light and nonselective ones. It is shown that the system eigenpolarizations mainly coincide with the quasi-orthogonal, quasi-circular polarizations for normally incident light, except the regions of diffraction reflection selective with respect to the polarization of incident light. The influence of the CLC sublayer thick-nesses, the incidence angle, the local dielectric (magnetic) anisotropy of the CLC layers, and the refractive indices and thicknesses of the isotropic media layers on the reflection spectra and other optical characteristics of the system is investigated.  相似文献   

17.
具有圆偏振发光(CPL)性质的材料由于在3D显示、光学存储以及光学防伪等领域的重要应用,近年来越来越受到研究人员的关注.超分子策略能够将不同类型的分子组装成具有独特功能的低维(零维、一维和二维等)结构,因而成为构筑CPL活性有机低维材料的最有效方法之一.本文从超分子自组装驱动力的角度综述了近几年自组装CPL活性有机低维...  相似文献   

18.
本文从制作方法、结构设计和材料选择几方面综述了超材料在太赫兹波段的电磁响应特性和潜在应用。首先,介绍了获得不同维度、具有特异电磁响应以及结构可调超材料的各种微加工制作方法,进而分析和讨论了超材料的电磁响应特性。文中指出,结构设计可以控制超材料的电磁响应特性,如各向异性、双各向异性、偏振调制、多频响应、宽带响应、不对称透射、旋光性和超吸收等。超材料的电磁响应依赖于周围微环境的介电性质,因而可用于制作对环境敏感的传感器件。此外,电光、磁光、相变、温度敏感等功能材料的引入可以获得光场、电场、磁场、温度等主动控制的太赫兹功能器件。最后,简单介绍了超材料在太赫兹波段进一步发展所面临的机遇和挑战。  相似文献   

19.
太赫兹时域光谱技术是材料介电参数测量的重要方法,是材料研究、鉴别和分析的重要工具。太赫兹时域光谱技术是一种太赫兹频段的相干探测技术,可以同时获得太赫兹波的幅度和相位信息,通过透射测量、反射测量可获得材料的复透射率或复反射率来反演材料的电磁参数。在实际中,大多数被测材料太赫兹波无法穿透,或者不满足透射材料参数反演需要的弱吸收近似,因此反射测量更具应用价值。在已发表的研究结果中,研究人员仍普遍采用透射测量的方案,很少见使用反射测量方案获取材料参数。究其原因,在反射测量时,由于样品和参考板位置的放置误差很难消除,从而导致无法准确提取反射相位。将光学领域广泛使用的Kamers-Kronig关系应用于太赫兹时域光谱系统反射测量中,以解决反射测量中无法准确获得相位信息从而无法提取介电参数的问题。为了验证Kamers-Kronig关系的准确性,一方面,通过透射、反射方法分别测量硅材料的复透射率、复反射率并反演了其材料参数,两者的反演结果一致性较好。另一方面,利用同一组硅的反射测量数据分别用Kamers-Kronig关系和最大熵法对其材料参数进行反演,两种处理方法也可以实现相互印证,进一步确保了提取数据的可靠性。对Kamers-Kronig关系和最大熵方法所取得的结果进行了对比讨论,通过Kamers-Kriong关系和最大熵法获得的折射率、消光系数以及复介电参数结果一致性较好,且基于Kamers-Kriong反演了一种精神药物的吸收谱,与透射结果做了比对。结果表明,Kamers-Kronig关系非常适合提取材料光学参数和吸收谱,且相比最大熵法其普适性更强,甚至对于无法获取相位信息的非相干测量系统依然适用,但该方法需要整个频段的反射率幅度信息,对于没有测量的频率需要进行外推,对于反射率随频率变化不大的物质更加适用。该研究成果对于利用反射式太赫兹时域光谱系统获取材料太赫兹波段的光学参数提供了一种有效方法,可解决绝大数情况下反射测量参数提取问题,对太赫兹时域光谱技术的实际应用具有重要意义。  相似文献   

20.
W. Xu  Y.P. Zhang 《Optik》2010,121(21):1929-1933
Coherent gradient sensing (CGS) is double grating lateral-shearing interferometric technique with the simplicity of the optical set-up, non-contact, real-time, full-field optical information and variable resolution, which has shown many applications in the study of quasi-static as well as dynamic crack-tip field in both homogeneous and composite materials. It can be used both in a reflection mode (for opaque materials) and in a transmission mode (for transparent materials). The accuracy of the fringe order in the CGS interference image will deeply influence the precision of experimental study. Because of the difference in the optical principle from other optical methods, the fringe order of CGS cannot be obtained through the phase-shift technology. In this paper, a kind of modified CGS method is introduced and analyzed, which can accurately obtain the fringe order of random position in the CGS interference image. This method does not need additional optical set-up and complicated image processing techniques, but only needs several (greater than two) CGS interference images under different loadings. Static fracture experiments show that this method can evidently improve the precision of the CGS method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号