首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
A lattice Boltzmann flux solver (LBFS) is presented in this work for simulation of incompressible viscous and inviscid flows. The new solver is based on Chapman-Enskog expansion analysis, which is the bridge to link Navier-Stokes (N-S) equations and lattice Boltzmann equation (LBE). The macroscopic differential equations are discretized by the finite volume method, where the flux at the cell interface is evaluated by local reconstruction of lattice Boltzmann solution from macroscopic flow variables at cell centers. The new solver removes the drawbacks of conventional lattice Boltzmann method such as limitation to uniform mesh, tie-up of mesh spacing and time interval, limitation to viscous flows. LBFS is validated by its application to simulate the viscous decaying vortex flow, the driven cavity flow, the viscous flow past a circular cylinder, and the inviscid flow past a circular cylinder. The obtained numerical results compare very well with available data in the literature, which show that LBFS has the second order of accuracy in space, and can be well applied to viscous and inviscid flow problems with non-uniform mesh and curved boundary.  相似文献   

2.
We present a new three-dimensional hybrid level set (LS) and volume of fluid (VOF) method for free surface flow simulations on tetrahedral grids. At each time step, we evolve both the level set function and the volume fraction. The level set function is evolved by solving the level set advection equation using a second-order characteristic based finite volume method. The volume fraction advection is performed using a bounded compressive normalized variable diagram (NVD) based scheme. The interface is reconstructed based on both the level set and the volume fraction information. The novelty of the method lies in that we use an analytic method for finding the intercepts on tetrahedral grids, which makes interface reconstruction efficient and conserves volume of fluid exactly. Furthermore, the advection of volume fraction makes use of the NVD concept and switches between different high resolution differencing schemes to yield a bounded scalar field, and to preserve both smoothness and sharp definition of the interface. The method is coupled to a well validated finite volume based Navier–Stokes incompressible flow solver. The code validation shows that our method can be employed to resolve complex interface changes efficiently and accurately. In addition, the centroid and intercept data available as a by-product of the proposed interface reconstruction scheme can be used directly in near-interface sub-grid models in large eddy simulation.  相似文献   

3.
A multiscale hybrid method for coupling the direct simulation Monte Carlo (DSMC) method to the nonequilibrium molecular dynamics (NEMD) method is introduced. The method addresses Knudsen layer type gas flows within a few mean free paths of an interface or about an object with dimensions of the order of a few mean free paths. It employs the NEMD method to resolve nanoscale phenomena closest to the interface along with coupled DSMC simulation of the remainder of the Knudsen layer. The hybrid DSMC/NEMD method is a particle based algorithm without a buffer zone. It incorporates a new, modified generalized soft sphere (MGSS) molecular collision model to improve the poor computational efficiency of the traditional generalized soft sphere GSS model and to achieve DSMC compatibility with Lennard-Jones NEMD molecular interactions. An equilibrium gas, a Fourier thermal flow, and an oscillatory Couette flow, are simulated to validate the method. The method shows good agreement with Maxwell–Boltzmann theory for the equilibrium system, Chapman–Enskog theory for Fourier flow, and pure DSMC simulations for oscillatory Couette flow. Speedup in CPU time of the hybrid solver is benchmarked against a pure NEMD solver baseline for different system sizes and solver domain partitions. Finally, the hybrid method is applied to investigate interaction of argon gas with solid surface molecules in a parametric study of the influence of wetting effects and solid molecular mass on energy transfer and thermal accommodation coefficients. It is determined that wetting effect strength and solid molecular mass have a significant impact on the energy transfer between gas and solid phases and thermal accommodation coefficient.  相似文献   

4.
A second-order hybrid level set-volume constraint method (HLSVC) for numerically simulating deforming boundaries is presented. We combine the HLSVC interface advection algorithm with a two phase flow solver in order to numerically capture deforming bubbles and drops whose actual volume (s) fluctuate about fixed “target” volume (s). Three novel developments are described: (1) a new method for enforcing a volume constraint in which the number of bubbles and drops can change due to merging or splitting, (2) a new, second order, semi-lagrangian narrow band level set reinitialization algorithm, and (3) validation of a two-phase flow numerical method by comparison with linear stability analysis results for a co-flowing liquid jet in gas. The new interface capturing method is tested on benchmark problems in which the velocity is prescribed (passive advection of interfaces) and in which the velocity is determined by the incompressible Navier–Stokes equations for two-phase flow. The error in interface position when using the hybrid level set-volume constraint method is reported for many benchmark problems in polar coordinates, cylindrical coordinates, and on an adaptive grid in which one criteria of adaptivity is the magnitude of the interface curvature.  相似文献   

5.
采用非结构化网格有限容积法求解了不可压N-S方程组,对流项采用GAMMA格式,扩散项采用二阶中心差分格式建立离散方程,用SOAR算法处理压力与速度的耦合关系,得到了一种求解不可压N-S方程的非结构网格耦合求解器。通过方腔顶盖驱动流、后台阶绕流以及方腔自然对流等几个典型的算例,考察了求解器的计算精度及收敛特性,并与SIMPLE算法进行了比较,结果表明该求解器是有效可行的。  相似文献   

6.
We present a new interface reconstruction technique, the Local Front Reconstruction Method (LFRM), for incompressible multiphase flows. This new method falls in the category of Front Tracking methods but it shares automatic topology handling characteristics of the previously proposed Level Contour Reconstruction Method (LCRM). The LFRM tracks the phase interface explicitly as in Front Tracking but there is no logical connectivity between interface elements thus greatly easing the algorithmic complexity. Topological changes such as interfacial merging or pinch off are dealt with automatically and naturally as in the Level Contour Reconstruction Method. Here the method is described for both two- and three-dimensional flow geometries. The interfacial reconstruction technique in the LFRM differs from that in the LCRM formulation by foregoing using an Eulerian distance field function. Instead, the LFRM uses information from the original interface elements directly to generate the new interface in a mass conservative way thus showing significantly improved local mass conservation. Because the reconstruction procedure is independently carried out in each individual reconstruction cell after an initial localization process, an adaptive reconstruction procedure can be easily implemented to increase the accuracy while at the same time significantly decreasing the computational time required to perform the reconstruction. Several benchmarking tests are performed to validate the improved accuracy and computational efficiency as compared to the LCRM. The results demonstrate superior performance of the LFRM in maintaining detailed interfacial shapes and good local mass conservation especially when using low-resolution Eulerian grids.  相似文献   

7.
We describe a numerical method for modeling temperature-dependent fluid flow coupled to heat transfer in solids. This approach to conjugate heat transfer can be used to compute transient and steady state solutions to a wide range of fluid–solid systems in complex two- and three-dimensional geometry. Fluids are modeled with the temperature-dependent incompressible Navier–Stokes equations using the Boussinesq approximation. Solids with heat transfer are modeled with the heat equation. Appropriate interface equations are applied to couple the solutions across different domains. The computational region is divided into a number of sub-domains corresponding to fluid domains and solid domains. There may be multiple fluid domains and multiple solid domains. Each fluid or solid sub-domain is discretized with an overlapping grid. The entire region is associated with a composite grid which is the union of the overlapping grids for the sub-domains. A different physics solver (fluid solver or solid solver) is associated with each sub-domain. A higher-level multi-domain solver manages the entire solution process.  相似文献   

8.
In this paper, a hybrid lattice Boltzmann flux solver (LBFS) is proposed for simulation of viscous compressible flows. In the solver, the finite volume method is applied to solve the Navier-Stokes equations. Different from conventional Navier-Stokes solvers, in this work, the inviscid flux across the cell interface is evaluated by local reconstruction of solution using one-dimensional lattice Boltzmann model, while the viscous flux is still approximated by conventional smooth function approximation. The present work overcomes the two major drawbacks of existing LBFS [28–31], which is used for simulation of inviscid flows. The first one is its ability to simulate viscous flows by including evaluation of viscous flux. The second one is its ability to effectively capture both strong shock waves and thin boundary layers through introduction of a switch function for evaluation of inviscid flux, which takes a value close to zero in the boundary layer and one around the strong shock wave. Numerical experiments demonstrate that the present solver can accurately and effectively simulate hypersonic viscous flows.  相似文献   

9.
A self-consistent procedure for deriving subgrid scale models for a complex system of equations is presented. When applied to the Navier-Stokes equation for incompressible flow it reproduces the differential version of the stress-similarity model with a correct coefficient. As an example the complete system of equations is derived for an ocean global circulation model.  相似文献   

10.
This paper presents a novel approach to phase-interface transport based on pseudo-spectral sub-grid refinement of a level set function. In each flow solver grid cell, a set of quadrature points is introduced on which the value of the level set function is known. This methodology allows to define a polynomial reconstruction of the level set function in each cell. The transport is performed using a semi-Lagrangian technique, removing all constraints on the time step size. Such an approach provides sub-cell resolution of the phase-interface and leads to excellent accuracy in the transport, while a reasonable cost is obtained by pre-computing some of the metrics associated with the polynomials. To couple this approach with a flow solver, an converging curvature computation is introduced. First, a second order explicit distance to the sub-grid interface is reconstructed on the flow solver mesh. Then, a least squares approach is employed to extract the curvature from this distance function. This technique is found to combine the high accuracy and good conservation found in the particle level set method with the converging curvature usually obtained with classical high order PDE transport of the level set function. Tests are presented for both transport as well as two-phase flows, that suggest that this technique is capable of retaining the thin liquid structures that are expected in turbulent atomization of liquids.  相似文献   

11.
In this work, the local grid refinement procedure is focused by using a nested Cartesian grid formulation. The method is developed for simulating unsteady viscous incompressible flows with complex immersed boundaries. A finite-volume formulation based on globally second-order accurate central-difference schemes is adopted here in conjunction with a two-step fractional-step procedure. The key aspects that needed to be considered in developing such a nested grid solver are proper imposition of interface conditions on the nested-block boundaries, and accurate discretization of the governing equations in cells that are with block-interface as a control-surface. The interpolation procedure adopted in the study allows systematic development of a discretization scheme that preserves global second-order spatial accuracy of the underlying solver, and as a result high efficiency/accuracy nested grid discretization method is developed. Herein the proposed nested grid method has been widely tested through effective simulation of four different classes of unsteady incompressible viscous flows, thereby demonstrating its performance in the solution of various complex flow–structure interactions. The numerical examples include a lid-driven cavity flow and Pearson vortex problems, flow past a circular cylinder symmetrically installed in a channel, flow past an elliptic cylinder at an angle of attack, and flow past two tandem circular cylinders of unequal diameters. For the numerical simulations of flows past bluff bodies an immersed boundary (IB) method has been implemented in which the solid object is represented by a distributed body force in the Navier–Stokes equations. The main advantages of the implemented immersed boundary method are that the simulations could be performed on a regular Cartesian grid and applied to multiple nested-block (Cartesian) structured grids without any difficulty. Through the numerical experiments the strength of the solver in effectively/accurately simulating various complex flows past different forms of immersed boundaries is extensively demonstrated, in which the nested Cartesian grid method was suitably combined together with the fractional-step algorithm to speed up the solution procedure.  相似文献   

12.
基于预处理HLLEW格式的全速域数值算法   总被引:2,自引:0,他引:2  
基于HLLEW(Harten-Lax-Van Leer-Einfeldt-Wada)格式引入预处理技术发展适合求解全速域流场的三维Navier-Stokes求解器.引入低速预处理技术,重新构造HLLEW格式的耗散项,给出预处理后的HLLEW格式,并根据预处理后的雅克比矩阵构造相应的隐式时间推进方程.利用预处理方法求解NACA 4412低速不可压流动与RAE 2822跨声速可压缩流动,并与实验结果及原有方法的计算结果对比.结果表明:预处理HLLEW格式不仅提高低速不可压缩流动的计算效率和精度,也保持了对可压缩流动的处理能力,是一种适用于全速域流场数值模拟的有效方法.  相似文献   

13.
A model of parallel noninteracting cascades in the spectral space is suggested in terms of which the turbulent flow of an incompressible fluid subject to arbitrary large-scale velocity gradients is described. The linear parts of model equations for two polarization components of the velocity are derived from the Navier-Stokes equations, and their nonlinear parts correspond to the 1D Burgers model. Using the model suggested, explicit expressions for subgrid Reynolds stresses without empiric parameters are obtained.  相似文献   

14.
An anisotropic adaptation process is applied to a three-dimensional incompressible two-phase flow solver. The solver uses a level set/finite element method on unstructured tetrahedral meshes. We show how the level set function can be used to build an anisotropic mesh with good properties. Some computations with a strong transient character and large densities ratios (1/1000) are presented. We show that the efficiency of the computations can be deeply enhanced by mesh adaptations.  相似文献   

15.
We propose a discretization method of a five-equation model with isobaric closure for the simulation of interfaces between compressible fluids. This numerical solver is a Lagrange–Remap scheme that aims at controlling the numerical diffusion of the interface between both fluids. This method does not involve any interface reconstruction procedure. The solver is equipped with built-in stability and consistency properties and is conservative with respect to mass, momentum, total energy and partial masses. This numerical scheme works with a very broad range of equations of state, including tabulated laws. Properties that ensure a good treatment of the Riemann invariants across the interface are proven. As a consequence, the numerical method does not create spurious pressure oscillations at the interface. We show one-dimensional and two-dimensional classic numerical tests. The results are compared with the approximate solutions obtained with the classic upwind Lagrange–Remap approach, and with experimental and previously published results of a reference test case.  相似文献   

16.
A balanced force refined level set grid method for two-phase flows on structured and unstructured flow solver grids is presented. To accurately track the phase interface location, an auxiliary, high-resolution equidistant Cartesian grid is introduced. In conjunction with a dual-layer narrow band approach, this refined level set grid method allows for parallel, efficient grid convergence and error estimation studies of the interface tracking method. The Navier–Stokes equations are solved on an unstructured flow solver grid with a novel balanced force algorithm for level set methods based on the recently proposed method by Francois et al. [M.M. Francois, S.J. Cummins, E.D. Dendy, D.B. Kothe, J.M. Sicilian, M.W. Williams, A balanced-force algorithm for continuous and sharp interfacial surface tension models within a volume tracking framework, J. Comput. Phys. 213 (2006) 141–173] for volume of fluid methods on structured grids. To minimize spurious currents, a second order converging curvature evaluation technique for level set methods is presented. The results of several different test cases demonstrate the effectiveness of the proposed method, showing good mass conservation properties and second order converging spurious current magnitudes.  相似文献   

17.
Mechanisms governing heat and mass transfer at air-water interfaces may be studied experimentally and by mean of Direct Numerical Simulations (DNS). Flow visualizations play a central role in unraveling the mechanisms that govern these transfer rates. In particular visualizations show that the flow is organized in large structures. These are sweeps, high-speed (relative to the interface velocity) fluid traveling toward the interface, and ejections, low speed fluid moving away from the interface region. It is the frequency with which these large flow structures refresh the interface that controls mass transfer.  相似文献   

18.
A characteristic-based unsteady viscous flow solver is developed with preconditioning that is uniformly applicable for Mach numbers ranging from essentially incompressible to supersonic. A preconditioned flux-difference formulation for nondimensional primitive variables is a key element of the present approach. The simple primitive-variable numerical flux is related to Roe’s flux-difference scheme and preserves contact discontinuities using primitive variables, with or without preconditioning. Preconditioning by a single-parameter diagonal matrix conditions the system eigenvalues in terms of nondimensional local velocity and local temperature. An iterative implicit solution algorithm is given for the preconditioned formulation and is used for several simple test and validation cases. These include an inviscid shock-tube case, flat-plate boundary layer flow at low Mach number, viscous flow past a circular cylinder at low Reynolds number and with different thermal boundary conditions, and validation cases for incompressible and transonic flows.  相似文献   

19.
An augmented method based on a Cartesian grid is proposed for the incompressible Navier–Stokes equations in irregular domains. The irregular domain is embedded into a rectangular one so that a fast Poisson solver can be utilized in the projection method. Unlike several methods suggested in the literature that set the force strengths as unknowns, which often results in an ill-conditioned linear system, we set the jump in the normal derivative of the velocity as the augmented variable. The new approach improves the condition number of the system for the augmented variable significantly. Using the immersed interface method, we are able to achieve second order accuracy for the velocity. Numerical results and comparisons to benchmark tests are given to validate the new method. A lid-driven cavity flow with multiple obstacles and different geometries are also presented.  相似文献   

20.
周军  蔡力  周凤岐 《中国物理 B》2008,17(5):1535-1544
We propose a hybrid scheme for computations of incompressible two-phase flows. The incompressible constraint has been replaced by a pressure Poisson-like equation and then the pressure is updated by the modified marker and cell method. Meanwhile, the moment equations in the incompressible Navier-Stokes equations are solved by our semidiscrete Hermite central-upwind scheme, and the interface between the two fluids is considered to be continuous and is described implicitly as the 0.5 level set of a smooth function being a smeared out Heaviside function. It is here named the hybrid scheme. Some numerical experiments are successfully carried out, which verify the desired efficiency and accuracy of our hybrid scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号