首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
初始位置布局不平衡的疏散行人流仿真研究   总被引:2,自引:0,他引:2       下载免费PDF全文
岳昊  张旭  陈刚  邵春福 《物理学报》2012,61(13):130509-130509
行人初始位置布局不平衡的多安全出口疏散过程, 是行人疏散流仿真研究的热点. 利用行人流动态参数仿真模型, 在实际距离和假想距离"极大极小"路径选择机理的基础上, 改进假想距离的计算方法及其拥堵计算区域, 实现疏散过程的动态平衡; 提出行人位置布局的不平衡系数, 以描述疏散空间内行人初始位置布局的不平衡性. 从行人初始位置随机和固定布局的角度, 仿真研究正常疏散环境下行人布局的不平衡性对疏散时间的影响, 并将仿真结果与原始模型做对比分析. 研究表明, 模型能有效地实现行人流疏散过程的动态平衡, 行人疏散时间受行人位置或安全出口布局的影响较小, 而与安全出口总宽度、 行人的初始数量以及拥堵感知系数有关.  相似文献   

2.
Guan-Ning Wang 《中国物理 B》2022,31(6):60402-060402
The study of the panic evacuation process is of great significance to emergency management. Panic not only causes negative emotions such as irritability and anxiety, but also affects the pedestrians decision-making process, thereby inducing the abnormal crowd behavior. Prompted by the epidemiological SIR model, an extended floor field cellular automaton model was proposed to investigate the pedestrian dynamics under the threat of hazard resulting from the panic contagion. In the model, the conception of panic transmission status (PTS) was put forward to describe pedestrians' behavior who could transmit panic emotions to others. The model also indicated the pedestrian movement was governed by the static and hazard threat floor field. Then rules that panic could influence decision-making process were set up based on the floor field theory. The simulation results show that the stronger the pedestrian panic, the more sensitive pedestrians are to hazards, and the less able to rationally find safe exits. However, when the crowd density is high, the panic contagion has a less impact on the evacuation process of pedestrians. It is also found that when the hazard position is closer to the exit, the panic will propagate for a longer time and have a greater impact on the evacuation. The results also suggest that as the extent of pedestrian's familiarity with the environment increases, pedestrians spend less time to escape from the room and are less sensitive to the hazard. In addition, it is essential to point out that, compared with the impact of panic contagion, the pedestrian's familiarity with environment has a more significant influence on the evacuation.  相似文献   

3.
A force-driving cellular automata model considering the social force on cell movement, such as the desirous willing of a pedestrian to exit, the repulsive interaction among pedestrians or between pedestrians and obstacles, was set up to investigate the evacuation behaviors of pedestrians at a T-shaped intersection. And an analogical formulation, taking reference of the magnetic force, was introduced to describe the above repulsive actions. Based on the model, the evacuation behaviors of pedestrians were simulated in terms of different pedestrian density, distribution and corridor width, and then evacuation time was obtained and analyzed. Furthermore, an experiment was conducted to verify the results of the presented model. The results demonstrate that when the density of pedestrians is greater than a certain threshold, pedestrians of a certain direction would be jammed by the repulsion from pedestrians of the counter flow from another direction, and the evacuation time of the former would be longer, even though they are closer to the exit, which would possibly result in a serious casualty in an emergency circumstance. And the phenomenon has been validated by the experiments well. In addition, a corresponding critical corridor width related to different DOPs, beyond which the evacuation time could be decreased rapidly due to a strong degradation of jamming behaviors near the T-shaped intersection, was also discovered and predicted by the proposed model.  相似文献   

4.
郭宁  姜锐  胡茂彬  丁建勋 《中国物理 B》2017,26(12):120506-120506
In this paper, the evacuation dynamics in an artificial room with only one exit is investigated via experiments and modeling. Two sets of experiments are implemented, in which pedestrians are asked to escape individually. It is found that the average evacuation time gap is essentially constant. To model the evacuation dynamics, an improved social force model is proposed, in which it is assumed that the driving force of a pedestrian cannot be performed when the resultant physical force exceeds a threshold. Simulation results are in good agreement with the experimental ones.  相似文献   

5.
Ying Zheng  Bin Jia  Xin-Gang Li  Nuo Zhu 《Physica A》2011,390(18-19):3147-3156
This paper investigates the dynamics of pedestrian evacuation with the influence of the fire spreading. An extended floor field model is proposed. In the new model, the effect of fire on the evacuation is considered by introducing the fire floor field. Thus, the floor field intensity is weighted by static, dynamic and fire floor fields. Numerical simulations are carried out to study the dynamics in the process of the evacuation. The influence of the parameters–weight of fire floor field, fire spread rate–on the evacuation efficiency is analyzed in detail. The simulation results show that the number of pedestrians evacuated out of the room is highly related to both the original location of the fire and the configuration of the room. Those results can bring some guidance to design the evacuation strategy in panic situation.  相似文献   

6.
A novel three-dimensional cellular automata evacuation model was proposed based on stairs factor for paired effect and variety velocities in pedestrian evacuation. In the model pedestrians' moving probability of target position at the next moment was defined based on distance profit and repulsive force profit, and evacuation strategy was elaborated in detail through analyzing variety velocities and repulsive phenomenon in moving process. At last, experiments with the simulation platform were conducted to study the relationships of evacuation time, average velocity and pedestrian velocity. The results showed that when the ratio of single pedestrian was higher in the system, the shortest route strategy was good for improving evacuation efficiency; in turn, if ratio of paired pedestrians was higher, it is good for improving evacuation efficiency to adopt strategy that avoided conflicts, and priority should be given to scattered evacuation.  相似文献   

7.
Pedestrian evacuation is actually a process of behavioral evolution. Interaction behaviors between pedestrians affect not only the evolution of their cooperation strategy, but also their evacuation paths-scheduling and dynamics features. The existence of interaction behaviors and cooperation evolution is therefore critical for pedestrian evacuation. To address this issue, an extended cellular automaton(CA) evacuation model considering the effects of interaction behaviors and cooperation evolution is proposed here. The influence mechanism of the environment factor and interaction behaviors between neighbors on the decision-making of one pedestrian to path scheduling is focused. Average payoffs interacting with neighbors are used to represent the competitive ability of one pedestrian, aiming to solve the conflicts when more than one pedestrian competes for the same position based on a new method. Influences of interaction behaviors, the panic degree and the conflict cost on the evacuation dynamics and cooperation evolution of pedestrians are discussed. Simulation results of the room evacuation show that the interaction behaviors between pedestrians to a certain extent are beneficial to the evacuation efficiency and the formation of cooperation behaviors as well. The increase of conflict cost prolongs the evacuation time. Panic emotions of pedestrians are bad for cooperation behaviors of the crowd and have complex effects on evacuation time. A new self-organization effect is also presented.  相似文献   

8.
陈亮  郭仁拥  塔娜 《物理学报》2013,62(5):50506-050506
为研究行人疏散过程中的路径选择行为, 提出了一个基于元胞自动机的行人微观模型, 并组织了三组双出口教室内的学生疏散实验. 模型中, 行人路径选择行为受其到出口距离、前方路径通行能力和行人间排斥力影响. 通过观察实验结果, 得到一些相关现象. 利用实验结果对模型参数进行校正. 利用校正模型对该教室内疏散学生流进行仿真, 结果表明 模型能有效地刻画教室内学生流的疏散特征, 疏散时间随学生人数线性增加. 该研究有助于类似场景中行人疏散策略和方案的制定. 关键词: 元胞自动机 行人疏散 仿真 实验  相似文献   

9.
《Physica A》2006,363(2):492-500
Introducing the force concept of a social force model into the lattice gas (LG) model, a new LG-based discrete model entitled “multi-grid model” is composed. In the new model, finer lattice is used; thus each pedestrian occupies multiple grids instead of one, and the rules of interactions among pedestrians or pedestrians and constructions are built. The interaction forces including extrusion, repulsion and friction are considered as passive factors for evacuation. The strength of the drift, or the intensity of the pedestrians to move toward the exit rapidly, is considered an active factor. A simple situation is studied in which pedestrians try to evacuate from a large room with only one door. The influences of interaction forces and drift on evacuation time are analyzed. The mutual restriction relation of the two factors in the course of evacuating is found.  相似文献   

10.
In this brief letter, we modify the classic social force model of Helbing which is applied to simulate how a pedestrian gets outside a hall full of smoke. As the Vicsek model does, the view radius is introduced to describe the range the pedestrian can see. The relation between the evacuation time and the view radius is studied with different numbers of pedestrians. The results show that the shorter the view radius is, the more time walkers will spend escaping, and even fail to escape. And the relation between the number of remaining walkers and the view radius shows non-monotonicity, if the number of pedestrians is larger than 600. And lastly, we propose to enlarge the width of the exit or to add two small exits in the corners, which may decrease the evacuation time greatly and obviously reduce the number of remaining walkers.  相似文献   

11.
Jun Zhang  Xuan Xu 《Physica A》2008,387(23):5901-5909
The evacuation process of students from a classroom is investigated by both experiment and modeling. We investigate the video record of the pedestrian movement in the classroom, and find some typical characteristics of the evacuation, including variable velocity, dislocable queuing, monopolizing exit and so on. Based on the experimental observation, we improve the multi-grid model by considering the pre-movement time of each pedestrian, adopting variable velocity and using a new update procedure. With the improved multi-grid model, we simulate the evacuation process and compare the simulation results with the experimental results, and find that they agree with each other closely. In order to analyze the uncertainty of evacuation, we investigate the influences of the pre-movement time and its distribution on the evacuation. It is found that the evacuation times exhibit a (truncated) normal distribution and vary within a region of about 30% of the mean value. An interesting phenomenon is that the evacuation time of the egress experiment is close to the minimum value calculated with the model, due to the coordination among pedestrians during the experiment. The study may be useful in developing applicable egress models and understanding the basic egress behaviors.  相似文献   

12.
The Spring Festival is the most important festival in China. How can passengers go home smoothly and quickly during the Spring Festival travel rush, especially when emergencies of terrible winter weather happen? By modifying the social force model, we simulated the pedestrian flow in a station hall. The simulation revealed casualties happened when passengers escaped from panic induced by crowd turbulence. The results suggest that passenger numbers, ticket checking patterns, baggage volumes, and anxiety can affect the speed of passing through the waiting corridor. Our approach is meaningful in understanding the feature of a crowd moving and can be served to reproduce mass events. Therefore, it not only develops a realistic modeling of pedestrian flow but also is important for a better preparation of emergency management.  相似文献   

13.
Considerable research has been conducted on the topic of unidirectional evacuations from exits. However, few studies aim at simulating counter flow through a bottleneck with complex conflict. This paper proposes an agent-based model to investigate bidirectional flow evacuation. Pedestrian speed is determined by the speed of the leading agent and the surrounding agents. The moving direction of pedestrian originates from four forces, namely, gradient force, repulsive force, resistance force, and random force. These four forces dominate the main stream of the pedestrian moving trajectory, the interaction between pedestrians and their local environment, the resistance or disinclination to movement, and the random variations and chaotic nature of pedestrian dynamics. The novelty of this research is in the agent-based model that combines the agent and forces while providing insights for the simulation of the pedestrian dynamic on the cognitive level. The experiment results show that the behavior that arises from this model is consistent with the observations from Guangzhou Metro and that this model could help capture the essence of pedestrian behavior near egresses.  相似文献   

14.
Based on the cellular automata method (CA model) and the mobile lattice gas model (MLG model), we have developed a heterogeneous lattice gas model for simulating pedestrian evacuation processes in an emergency. A local population density concept is introduced first. The update rule in the new model depends on the local population density and the exit crowded degree factor. The drift D, which is one of the key parameters influencing the evacuation process, is allowed to change according to the local population density of the pedestrians. Interactions including attraction, repulsion, and friction between every two pedestrians and those between a pedestrian and the building wall are described by a nonlinear function of the corresponding distance, and the repulsion forces increase sharply as the distances get small. A critical force of injury is introduced into the model, and its effects on the evacuation process are investigated. The model proposed has heterogeneous features as compared to the MLG model or the basic CA model. Numerical examples show that the model proposed can capture the basic features of pedestrian evacuation, such as clogging and arching phenomena.  相似文献   

15.
谢积鉴  薛郁 《物理学报》2012,61(19):194502-194502
在室内行人疏散过程中,行人博弈对疏散效率有着重要的影响.本文把抵制博弈策略更新的强度定义为抵制强度. 为了研究抵制强度对疏散效率的影响, 通过在行人博弈策略更新的概率中引入抵制强度,基于元胞自动机模型数值计算在不同的行人密度, 出口宽度下疏散总时间随抵制强度变化的关系.结果表明: 室内行人疏散过程中, 抵制强度小会使得争抢行为极其容易蔓延. 当行人密度小且出口宽大时, 输入以急速疏散为主的规范信息,鼓励行人模仿优胜者更新博弈策略, 当行人密度大且出口狭小时, 输入以避让为主的规范信息抑制行人争抢,都能提高疏散效率. 最后找出不同条件下与最短疏散总时间相对应的优化抵制强度, 为提高室内行人疏散效率提供一个新的视角.  相似文献   

16.
X. Xu  H.Y. Zheng 《Physica A》2008,387(22):5567-5574
In the traditional egress model based on cellular automata, building spaces are divided into discrete grids, the size of which is usually as large as that of a pedestrian. In order to explore the influences of the grid size on the evacuation results, we studied the evacuation process using a multi-grid egress model. In the multi-grid model, a finer grid is used and each pedestrian occupies n×n basic grids. It is found that if the pedestrian always moves one grid at each time step, the evacuation time increases with the decrease of the grid size, and reaches a stable, grid-independent value when the grid size is small enough. Another factor which influences the evacuation results is the length of the time step. It is found that with the increasing length of the time step, the evacuation time has a tendency to increase but endures complex changes. The differences between the single-grid model and multi-grid model may be due to two main reasons. First, in the multi-grid model, the pedestrians are out of alignment so that there are patches of unusable empty spaces as they are smaller in size than a pedestrian. Second, in the multi-grid model, pedestrians tend to reach the exit at the same time, leading to more serious conflicts among pedestrians.  相似文献   

17.
18.
张磊  岳昊  李梅  王帅  米雪玉 《物理学报》2015,64(6):60505-060505
基于元胞自动机仿真研究拥堵疏散条件下行人拥挤力的产生、传递、吸收、抵消、累积等过程, 以安全出口前拱形的拥挤疏散行人流为研究对象, 研究拥挤致伤的生成机理. 基于行人位置距安全出口的距离, 生成趋于安全出口方向的拥挤力; 引入拥挤力效果与合力参数, 分别描述外界拥挤力对个体行人的作用效果与作用合力; 引入吸收系数与抗死伤系数, 分别描述拥挤力传递过程中行人对外界拥挤力的吸收与抵抗能力. 研究表明, 随吸收系数或抗死伤系数的增加, 能有效预防疏散行人流的拥挤致伤; 存在临界吸收系数与抗死伤系数, 将系统区分为弱保护相位、强保护相位和完全保护相位; 拥挤的死伤数量随疏散行人数量的增加而增加; 而且, 拥挤致伤的危险区域在安全出口前以安全出口中心线为对称轴呈“倒钟”形分布.  相似文献   

19.
胡俊  游磊 《物理学报》2014,63(8):80507-080507
为了有效刻画行人在三维空间中的疏散状况,结合阶梯因素提出了一种新的三维元胞自动机模型,该模型首先基于位置吸引力和碰撞可能性给出了行人移动概率的计算公式,并通过定义元胞演化过程阐述其疏散策略,同时,利用建立的仿真平台进行实验,深入分析了疏散时间、出口流率、出口宽度、初始行人密度以及系统平均速度之间的关系,以此获得更加符合实际情况的行人流特征,结果表明,疏散时间、出口流率与初始行人密度呈现正相关,而与出口宽度呈现负相关,并且系统平均速度和出口宽度对于最优疏散时间存在一个理想阈值。  相似文献   

20.
Yang-Hui Hu 《中国物理 B》2023,32(1):18901-018901
Building exit as a bottleneck structure is the last and the most congested stage in building evacuation. It is well known that obstacles at the exit affect the evacuation process, but few researchers pay attention to the effect of stationary pedestrians (the elderly with slow speed, the injured, and the static evacuation guide) as obstacles at the exit on the evacuation process. This paper explores the influence of the presence of a stationary pedestrian as an obstacle at the exit on the evacuation from experiments and simulations. We use a software, Pathfinder, based on the agent-based model to study the effect of ratios of exit width ($D$) to distance ($d$) between the static pedestrian and the exit, the asymmetric structure by shifting the static pedestrian upward, and types of obstacles on evacuation. Results show that the evacuation time of scenes with a static pedestrian is longer than that of scenes with an obstacle due to the unexpected hindering effect of the static pedestrian. Different ratios of $D/d$ have different effects on evacuation efficiency. Among the five $D/d$ ratios in this paper, the evacuation efficiency is the largest when $d$ is equal to $0.75D$, and the existence of the static pedestrian has a positive impact on evacuation in this condition. The influence of the asymmetric structure of the static pedestrian on evacuation efficiency is affected by $D/d$. This study can provide a theoretical basis for crowd management and evacuation plan near the exit of complex buildings and facilities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号