首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
S. Al-Rajoub 《哲学杂志》2015,95(22):2466-2481
The structural, electronic and optical properties of mercury cadmium telluride (Hg1?xCdxTe; x = 0.0, 0.25, 0.5, 0.75) alloys are studied using density functional theory within full-potential linearized augmented plane wave method. We used the local density approximation (LDA), generalized gradient approximation (GGA), hybrid potentials, the modified Becke–Johnson (LDA/GGA)-mjb and Hubbard-corrected functionals (GGA/LDA + U), for the exchange-correlation potential (Eex). We found that LDA functional predicts better lattice constants than GGA functional, whereas, both functionals fail to predict the correct electronic structure. However, the hybrid functionals were more successful. For the case of HgTe binary alloy, the GGA + U functional predicted a semi-metallic behaviour with an inverted band gap of ?0.539 eV, which is closest to the experimental value (?0.30 eV). Ternary alloys, however, are found to be semiconductors with direct band gaps. For the x = 0.25 and 0.50, the best band gaps are found to be 0.39 and 0.81 eV using LDA-mbj functional, whereas, the GGA-mbj functional predicted the best band gap of 1.09 eV for Hg0.25Cd0.75Te alloy, which is in a very good agreement with the experimental value (1.061 eV). The optical properties of the alloys are obtained by calculating the dielectric function ?(ω). The peaks of the optical dielectric functions are consistent with the electronic gap energies of the alloys.  相似文献   

2.
肖美霞  梁尤平  陈玉琴  刘萌 《物理学报》2016,65(2):23101-023101
采用基于密度泛函理论的第一性原理模拟计算,研究了在应变作用下两层半氢化氮化镓纳米薄膜的电学和磁学性质.没有表面修饰的两层氮化镓纳米薄膜的原子结构为类石墨结构,并具有间接能隙.然而,当两层氮化镓纳米薄膜的一侧表面镓原子被氢化时,该纳米薄膜却依然保持纤锌矿结构,并且展示出铁磁性半导体特性.在应变作用下,两层半氢化氮化镓纳米薄膜的能隙可进行有效调控,并且它将会由半导体性质可转变为半金属性质或金属性质.这主要是由于应变对表面氮原子的键间交互影响和p-p轨道直接交互影响之间协调作用的结果.该研究成果为实现低维半导体纳米材料的多样化提供了有效的调控手段,为其应用于新型电子纳米器件和自旋电子器件提供重要的理论指导.  相似文献   

3.
高潭华  郑福昌  王晓春 《物理学报》2018,67(16):167101-167101
采用密度泛函理论第一性原理的PBE-D_2方法,对半氢化石墨烯与单层氮化硼(H-Gra@BN)复合体系的结构稳定性、电子性质和磁性进行了系统的研究.计算了六种可能的堆叠方式,结果表明:H-Gra@BN体系的AB-B构型是最稳定的,为铁磁性半导体,上、下自旋的带隙分别为3.097和1.798 e V;每个物理学原胞具有约1μB的磁矩,该磁矩主要来源于由未氢化的C_2原子的贡献;在z轴方向压应力的作用下,最稳的H-Gra@BN体系的电子性质由磁性半导体转变为半金属,再转变为非磁性金属;预测了一种能方便地通过应力调控电子性质和磁性质的新型材料,有望应用在纳米器件以及智能建筑材料等领域.  相似文献   

4.
采用基于第一性原理的密度泛函理论(DFT)赝势平面波方法计算了锰掺杂二硅化铬(CrSi2)体系的能带结构、态密度和光学性件质.计算结果表明末掺杂CrSi2属于间接带隙半导体间接带隙宽度△ER=0.35 eV;Mn掺杂后费米能级进入导带,带隙变窄,且间接带隙宽度△Eg=0.24 eV,CrSi2转变为n型半导体.光学参数发生改变,静态介电常数由掺杂前的ε1(O)=32变为掺杂后的ε1(O)=58;进一步分析了掺杂对CrSi2的能带结构、态密度和光学性质的影响,为CrSi2材料掺杂改件的研究提供r理论依据.  相似文献   

5.
First-principles calculations were used to calculate the structural, electronic and half-metallic ferromagnetism of Mn2RuGe1-xSnx (x?=?0, 0.25, 0.50, 0.75, 1) Heusler alloys. The Hg2CuTi-type structure is found to be energetic more than Cu2MnAl-type structure for both Mn2RuGe and Mn2RuSn compounds. The calculated lattice constants for Mn2RuGe and Mn2RuSn are 5.91?Å and 6.17?Å, respectively. The electronic band structures and density of states of Mn2RuGe show a half metallic character with total magnetic moments, 2 μB per formula unit that are in good agreement with Slater-Pauling rule with indirect band gap, 0.31?eV along the direction Γ –X. It is observed that the total magnetic moment per cell increases as Sn concentration increases in the Heusler alloys.  相似文献   

6.
Mg掺杂ZnO形成的固溶体Zn1-xMgxO(ZMO)(0 ≤ x ≤ 0.25)是一种带隙较宽、电子学性质可调控的半导体材料,在薄膜太阳电池及光电设备的透明电极等方面具有重要的应用价值。基于密度泛函理论下的第一性原理超软赝势方法,采用GGA+U计算了ZMO的电子结构和光学性质。计算结果表明,随着x值的增加,ZMO的禁带宽度由x=0时的3.32 eV增加到x=0.25时的3.78 eV;光吸收边及反射谱和能量损失谱均发生明显蓝移,峰值存在于紫外光区。计算结果与实验结论相符合。  相似文献   

7.
谢知  程文旦 《物理学报》2014,63(24):243102-243102
运用基于密度泛函理论的第一性原理方法, 系统研究了小尺寸锐钛矿相(n,0)型TiO2纳米管(D<16 Å)的几何构型、电子结构和光学性质. 结果表明: 随着管径增大, 体系单位TiO2分子的形成能降低, 体系趋于稳定; 在管径14 Å左右, (n,0)型TiO2纳米管会发生一次构型的转变. 能带分析显示, TiO2纳米管的电子态比较局域化, 小管径下(D<14 Å)其导电性更好; 随着构型的转变, TiO2纳米管由直接带隙转变为间接带隙, 并且带隙值随着管径的增大而增大, 这是由于π轨道重叠效应的影响大于量子限域效应所导致的结果. 两种效应的竞争, 使得TiO2纳米管的介电函数虚部ε2 (ω)谱的峰值位置随管径增大既可能红移也可能蓝移, 管径大于9 Å (即(8, 0)管)之后, TiO2纳米管的光吸收会出现明显的增强. 关键词: 2纳米管')" href="#">TiO2纳米管 第一性原理 电子结构 光学性质  相似文献   

8.
贾婉丽  周淼  王馨梅  纪卫莉 《物理学报》2018,67(10):107102-107102
基于密度泛函理论体系,计算了本征GaN材料和12.5%的Fe掺杂GaN体系的光电特性,分析了晶体结构、能带结构和电子态分布、介电函数、吸收系数、折射率、反射率、能量损失谱和消光系数,从理论上讨论了掺杂对体系光电特性的影响.计算所得理想GaN的禁带宽度为3.41 eV,Fe的重掺杂体系明显变窄,为3.06 eV,但仍为直接带隙半导体.本征GaN材料与Fe掺杂GaN体系的静态介电常数为5.74和6.20,折射率为2.39和2.48,能量损失最大值在20.02 eV和18.96 eV,最大吸收系数能量均在13.80 eV左右.计算结果为Fe掺杂GaN高压光电导开关材料及器件的进一步研究提供了有力的理论依据和实验支持.  相似文献   

9.
Hybrid density functional theory has been used to systematically study the electronic, geometric, and magnetic properties of strongly correlated materials PuOx , UOx , and U0.5Pu0.5Ox with x = 0.25. The calculations have been performed using the all-electron full- potential linearized augmented plane wave plus local orbitals basis (FP-L/APW+lo) method. Each compound has been studied at the ferromagnetic (FM) and anti-ferromagnetic (AFM) configurations with and without spin-orbit coupling (SOC) and full geometry optimizations. The optimized lattice constants, bulk moduli, and band gaps are reported. Total energy calculations indicate that the ground states are AFM for all compounds studied here and the band gaps are typically higher than 1.0 eV, characteristic of semiconductors. The total energy is lowered significantly and the band gaps increase with the inclusion of SOC. The chemical bonds between the actinide metals and oxygen atoms are primarily ionic in character.  相似文献   

10.
We report a systematic study of the structural, electronic and magnetic properties of Cr-doped CdTe for various Cr concentrations x (=0.25, 0.5, 0.75 and 1.0) using first principles calculations based on the density functional theory (DFT). The electronic band structure of the alloy has been calculated using the Wu-Cohen (WC) as well as the Angel-Vosko (EV) generalized gradient approximation (GGA) for the exchange-correlation potential. The analysis of the density of states (DOS) curves shows the half-metallic ferromagnetic character with half-metallic gap more than 0.52 eV. While the origin of half-metallic ferromagnetism is explained, the band structure calculations are used to determine s (p)-d exchange constants N0α (conduction band) and N0β (valence band) that agree with typical magneto-optical experiment. It is found that the p-d hybridization reduces the magnetic moment of Cr from its free space charge value and produces small magnetic moments on the Cd and Te sites. Lastly, we discuss the robustness of half-metallicity with respect to the variation of lattice constants of the CrxCd1−xTe alloys.  相似文献   

11.
In this study, we systematically investigated the structural, electronic and optical properties of armchair stanene nanoribbons (ASNRs) by using the first-principles calculations. First, we performed full geometry optimization calculations on various finite width ASNRs where all the edge Sn atoms are saturated by hydrogen atoms. The buckled honeycomb structure of two dimensional (2D) stanene is preserved, however the bond length between the edge Sn atoms is shortened to 2.77 Å compared to the remaining bonds with 2.82 Å length. The electronic properties of these nanoribbons strongly depend on their ribbon width. In general, band gap opens and increases with decreasing nanoribbon width indicating the quantum confinement effect. Consequently, the band gap values vary from a few meV exhibiting low-gap semiconductor (quasi-metallic) behavior to ~0.4–0.5 eV showing moderate semiconductor character. Furthermore, the band gap values are categorized into three groups according to modulo 3 of integer ribbon width N which is the number of Sn atoms along the width. In order to investigate the optical properties, we calculated the complex dielectric function and absorption spectra of ASNRs, they are similar to the one of 2D stanene. For light polarized along ASNRs, in general, largest peaks appear around 0.5 eV and 4.0 eV in the imaginary part of dielectric functions, and there are several smaller peaks between them. These major peaks redshifts, slightly to the lower energies of incident light with increasing nanoribbon width. On the other hand, for light polarized perpendicular to the ribbon, there is a small peak around 1.6 eV, then, there is a band formed from several peaks from 5 eV to ~7.5 eV, and the second one from 8 eV to ~9.5 eV. Moreover, the peak positions hardly move with varying nanoribbon width, which indicates that quantum confinement effect is not playing an essential role on the optical properties of armchair stanene nanoribbons. In addition, our calculations of the optical properties indicate the anisotropy with respect to the type of light polarization. This anisotropy is due to the quasi-2D nature of the nanoribbons.  相似文献   

12.
本文采用密度泛函理论系统的研究了二维单层金属卤化物CoX_2(X=Cl,Br,I)的结构稳定性、电子性质和磁性质.三种卤化物的束缚能分别是9.01、8.04和6.95 eV,表明Co原子和卤素原子间存在强相互作用.三种材料的能带结构都显示了间接带隙半导体特性.三种材料的总磁矩都是3 μ_B,主要来源于Co原子的磁矩.为了实现对材料物性的调控,我们考虑了双轴应变.发现压缩应变不仅可以显著增强铁磁态的稳定性,还可以实现体系从间接带隙半导体向直接带隙半导体的转变.  相似文献   

13.
As a stable allotropy of two-dimensional (2D) carbon materials, δ-graphyne has been predicted to be superior to graphene in many aspects. Using first-principles calculations, we investigated the electronic properties of carbon nanoribbons (CNRs) and nanotubes (CNTs) formed by δ-graphyne. It is found that the electronic band structures of CNRs depend on the edge structure and the ribbon width. The CNRs with zigzag edges (Z-CNRs) have spin-polarized edge states with ferromagnetic (FM) ordering along each edge and anti-ferromagnetic (AFM) ordering between two edges. The CNRs with armchair edges (A-CNRs), however, are semiconductors with the band gap oscillating with the ribbon width. For the CNTs built by rolling up δ-graphyne with different chirality, the electronic properties are closely related to the chirality of the CNTs. Armchair (n, n) CNTs are metallic while zigzag (n, 0) CNTs are semiconducting or metallic. These interesting properties are quite crucial for applications in δ-graphyne-based nanoscale devices.  相似文献   

14.
The structure and electronic properties of the WS2/SiC van der Waals (vdW) heterostructures under the influence of normal strain and an external electric field have been investigated by the ab initio method. Our results reveal that the compressive strain has much influence on the band gap of the vdW heterostructures and the band gap monotonically increases from 1.330 to 1.629 eV. The results also imply that electrons are likely to transfer from WS2 to SiC monolayer due to the deeper potential of SiC monolayer. Interestingly, by applying a vertical external electric field, the results present a parabola-like relationship between the band gap and the strength. As the E-field changes from to ?0.50 +0.20 V/Å, the band gap first increases from zero to a maximum of about 1.90 eV and then decreases to zero. The significant variations of band gap are owing to different states of W, S, Si, and C atoms in conduction band and valence band. The predicted electric field tunable band gap of the WS2/SiC vdW heterostructures is very promising for its potential use in nanodevices.  相似文献   

15.
The electronic structure of silicon carbide with increasing germanium content have been examined using first principles calculations based on density functional theory. The structural stability is analysed between two different phases, namely, cubic zinc blende and hexagonal phases. The zinc blende structure is found to be the stable one for all the Si1-xGexC semiconducting carbides at normal pressure. Effect of substitution of Ge for Si in SiC on electronic and mechanical properties is studied. It is observed that cubic SiC is a semiconductor with the band gap value 1.243?eV. The band gap value of SiC is increased due to the substitution of Ge and the band gap values of Si 0.75 Ge 0.25 C, Si 0.50 Ge 0.50 C, Si 0.25 Ge 0.75 C and GeC are 1.322 eV, 1.413 eV, 1.574 eV and 1.657?eV respectively. As the pressure is increased, it is found that the energy gap gets decreased for Si1-x GexC (X?=?0, 0.25, 0.50, 0.75, 1). The elastic constants satisfy the Born – Huang elastic stability criteria. The bulk modulus, shear modulus, Young’s modulus and Poisson’s ratio are also calculated and compared with the other available results.  相似文献   

16.
A first-principles study has been performed to evaluate the electronic and optical properties of wurtzite Zn1-xMgxO. Substitutional doping is considered with Mg concentrations of x = 0, 0.0625, 0.125, 0.1875 and 0.25, respectively. Mg incorporation can induce band gap widening due to the decrease of Zn 4s states. The imaginary part of the dielectric function shows that the optical transition from band edge emission decreases slightly with increasing Mg contents. The optical band gap also increases from 3.2 to 3.7 eV with increasing Mg contents from 0.0625 to 0.25. The calculated results suggest that relatively high Mg concentration is necessary for effective band gap engineering of wurtzite Zn1-xMgxO.  相似文献   

17.
We propose and investigate the properties of a digital ferromagnetic heterostructure consisting of a delta-doped layer of Mn in Si, using ab initio electronic-structure methods. We find that (i) ferromagnetic order of the Mn layer is energetically favorable relative to antiferromagnetic, and (ii) the heterostructure is a two-dimensional half-metallic system. The metallic behavior is contributed by three majority-spin bands originating from hybridized Mn-d and nearest-neighbor Si-p states, and the corresponding carriers are responsible for the ferromagnetic order in the Mn layer. The minority-spin channel has a calculated semiconducting gap of 0.25 eV. The band lineup is found to be favorable for retaining the half-metal character to near the Curie temperature. This kind of heterostructure may be of special interest for integration into mature Si technologies for spintronic applications.  相似文献   

18.
范航  王珊珊  李玉红 《物理学报》2015,64(9):97101-097101
本文采用第一性原理的方法系统研究了UO2的晶体结构、电子结构和弹性性质. 在计算中采用广义梯度近似结合Hubbard U项描述电子的局域强关联效应. 首先通过计算能带带隙大小并与理论值比较的方法, 得到了合理的有效库仑相关作用能(Ueff)的取值, 同时通过态密度的计算, 进一步验证了Ueff取值的合理性. 计算得到UO2中U原子的Ueff值为3.30 eV (Ueff=U-J, U=3.70 eV, J=0.40 eV). 应用此参数计算得到的UO2晶格常数为5.54 Å, 带隙宽度为2.17 eV. 该结果优于目前现有的研究结果, 同时在同样的Ueff值条件下计算所得到的弹性常数与实验值也符合得较好. 相较于之前的基于实验测量并分析得到的Ueff值, 我们所采用的方法在对UO2性质描述上更为准确. 不同的有效库仑相关作用能取值下的态密度结果表明, 有效库仑相关作用能的大小可以影响铀原子5f电子轨道的分布.  相似文献   

19.
《Current Applied Physics》2019,19(6):721-727
We investigated the dynamical stability, electronic and thermoelectric properties of the ZnFeTiSi Heusler compound by combining the first-principles calculations and semi-classical Boltzmann transport theory. The phonon dispersion indicates the dynamical stability and the calculated formation energy is negative which confirm the stability of ZnFeTiSi in the Heusler structure. The calculated electronic structures show that ZnFeTiSi is a semiconductor with an indirect band gap of about 0.573 eV using GGA and 0.643 eV by mBJ-GGA potentials at equilibrium lattice parameter (5.90 Å). Seebeck coefficient, electrical conductivity and electronic thermal conductivity were calculated to describe the thermoelectric properties of the ZnFeTiSi compound. It is found that it exhibits high Seebeck coefficient and power factor, making it promising for future thermoelectric applications.  相似文献   

20.
The electronic density of states (DOS), band structure and optical properties of orthorhombic SbTaO4 are studied by first principles full potential-linearized augmented plane wave (FP-LAPW) method. The calculation is done in the framework of density functional theory with the exchange and correlation effects treated using generalized gradient approximation (GGA). We find an indirect band gap of 1.9 eV at the R→Γ symmetry direction of the Brillouin zone in SbTaO4. It is observed that there is a strong hybridization between Ta-5d and O-2p electronic states which is responsible for the electronic properties of the system. Using the projected DOS and band structure we have analyzed the interband contribution to the optical properties of SbTaO4. The real and imaginary parts of the dielectric function of SbTaO4 are calculated, which correspond to electronic transitions from the valence band to the conduction band. The band gap obtained is in close agreement with the experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号