首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 218 毫秒
1.
张珺  郭宇锋  徐跃  林宏  杨慧  洪洋  姚佳飞 《中国物理 B》2015,24(2):28502-028502
A novel one-dimensional(1D) analytical model is proposed for quantifying the breakdown voltage of a reduced surface field(RESURF) lateral power device fabricated on silicon on an insulator(SOI) substrate.We assume that the charges in the depletion region contribute to the lateral PN junctions along the diagonal of the area shared by the lateral and vertical depletion regions.Based on the assumption,the lateral PN junction behaves as a linearly graded junction,thus resulting in a reduced surface electric field and high breakdown voltage.Using the proposed model,the breakdown voltage as a function of device parameters is investigated and compared with the numerical simulation by the TCAD tools.The analytical results are shown to be in fair agreement with the numerical results.Finally,a new RESURF criterion is derived which offers a useful scheme to optimize the structure parameters.This simple 1D model provides a clear physical insight into the RESURF effect and a new explanation on the improvement in breakdown voltage in an SOI RESURF device.  相似文献   

2.
郑直  李威  李平 《中国物理 B》2013,(4):471-475
A non-depletion floating layer silicon-on-insulator (NFL SOI) lateral double-diffused metal-oxide-semiconductor (LDMOS) is proposed and the NFL-assisted modulated field (NFLAMF) principle is investigated in this paper. Based on this principle, the floating layer can pin the potential for modulating bulk field. In particular, the accumulated high concentration of holes at the bottom of the NFL can efficiently shield the electric field of the SOI layer and enhance the dielectric field in the buried oxide layer (BOX). At variation of back-gate bias, the shielding charges of NFL can also eliminate back-gate effects. The simulated results indicate that the breakdown voltage (BV) is increased from 315 V to 558 V compared to the conventional reduced surface field (RESURF) SOI (CSOI) LDMOS, yielding a 77% improvement. Furthermore, due to the field shielding effect of the NFL, the device can maintain the same breakdown voltage of 558 V with a thinner BOX to resolve the thermal problem in an SOI device.  相似文献   

3.
A new analytical model of high voltage silicon on insulator (SOI) thin film devices is proposed, and a formula of silicon critical electric field is derived as a function of silicon film thickness by solving a 2D Poisson equation from an effective ionization rate, with a threshold energy taken into account for electron multiplying. Unlike a conventional silicon critical electric field that is constant and independent of silicon film thickness, the proposed silicon critical electric field increases sharply with silicon film thickness decreasing especially in the case of thin films, and can come to 141V/μm at a film thickness of 0.1μm which is much larger than the normal value of about 30V/μm. From the proposed formula of silicon critical electric field, the expressions of dielectric layer electric field and vertical breakdown voltage (VB,V) are obtained. Based on the model, an ultra thin film can be used to enhance dielectric layer electric field and so increase vertical breakdown voltage for SOI devices because of its high silicon critical electric field, and with a dielectric layer thickness of 2μm the vertical breakdown voltages reach 852 and 300V for the silicon film thicknesses of 0.1 and 5μm, respectively. In addition, a relation between dielectric layer thickness and silicon film thickness is obtained, indicating a minimum vertical breakdown voltage that should be avoided when an SOI device is designed. 2D simulated results and some experimental results are in good agreement with analytical results.  相似文献   

4.
A new analytical model for the surface electric field distribution and breakdown voltage of the silicon on insulator (SOI) trench lateral double-diffused metal-oxide-semiconductor (LDMOS) is presented. Based on the two-dimensional Laplace solution and Poisson solution, the model considers the influence of structure parameters such as the doping concentration of the drift region, and the depth and width of the trench on the surface electric field. Further, a simple analytical expression of the breakdown voltage is obtained, which offers an effective way to gain an optimal high voltage. All the analytical results are in good agreement with the simulation results.  相似文献   

5.
胡夏融  吕瑞 《中国物理 B》2014,(12):548-553
In this paper, an analytical model for the vertical electric field distribution and optimization of a high voltage-reduced bulk field(REBULF) lateral double-diffused metal–oxide-semiconductor(LDMOS) transistor is presented. The dependences of the breakdown voltage on the buried n-layer depth, thickness, and doping concentration are discussed in detail.The REBULF criterion and the optimal vertical electric field distribution condition are derived on the basis of the optimization of the electric field distribution. The breakdown voltage of the REBULF LDMOS transistor is always higher than that of a single reduced surface field(RESURF) LDMOS transistor, and both analytical and numerical results show that it is better to make a thick n-layer buried deep into the p-substrate.  相似文献   

6.
A new SOI power device with multi-region high-concentration fixed charge(MHFC) is reported. The MHFC is formed through implanting Cs or I ion into the buried oxide layer(BOX), by which the high-concentration dynamic electrons and holes are induced at the top and bottom interfaces of BOX. The inversion holes can enhance the vertical electric field and raise the breakdown voltage since the drain bias is mainly generated from the BOX. A model of breakdown voltage is developed, from which the optimal spacing has also been obtained. The numerical results indicate that the breakdown voltage of device proposed is increased by 287% in comparison to that of conventional LDMOS.  相似文献   

7.
乔明  庄翔  吴丽娟  章文通  温恒娟  张波  李肇基 《中国物理 B》2012,21(10):108502-108502
Based on the theoretical and experimental investigation of a thin silicon layer(TSL) with linear variable doping(LVD) and further research on the TSL LVD with a multiple step field plate(MSFP),a breakdown voltage(BV) model is proposed and experimentally verified in this paper.With the two-dimensional Poisson equation of the silicon on insulator(SOI) device,the lateral electric field in drift region of the thin silicon layer is assumed to be constant.For the SOI device with LVD in the thin silicon layer,the dependence of the BV on impurity concentration under the drain is investigated by an enhanced dielectric layer field(ENDIF),from which the reduced surface field(RESURF) condition is deduced.The drain in the centre of the device has a good self-isolation effect,but the problem of the high voltage interconnection(HVI) line will become serious.The two step field plates including the source field plate and gate field plate can be adopted to shield the HVI adverse effect on the device.Based on this model,the TSL LVD SOI n-channel lateral double-diffused MOSFET(nLDMOS) with MSFP is realized.The experimental breakdown voltage(BV) and specific on-resistance(R on,sp) of the TSL LVD SOI device are 694 V and 21.3 ·mm 2 with a drift region length of 60 μm,buried oxide layer of 3 μm,and silicon layer of 0.15 μm,respectively.  相似文献   

8.
庄翔  乔明  张波  李肇基 《中国物理 B》2012,21(3):37305-037305
This paper discusses the breakdown mechanism and proposes a new simulation and test method of breakdown voltage(BV) for an ultra-high-voltage(UHV) high-side thin layer silicon-on-insulator(SOI) p-channel lateral double-diffused metal-oxide semiconductor(LDMOS).Compared with the conventional simulation method,the new one is more accordant with the actual conditions of a device that can be used in the high voltage circuit.The BV of the SOI p-channel LDMOS can be properly represented and the effect of reduced bulk field can be revealed by employing the new simulation method.Simulation results show that the off-state(on-state) BV of the SOI p-channel LDMOS can reach 741(620) V in the 3-μm-thick buried oxide layer,50-μm-length drift region,and at 400 V back-gate voltage,enabling the device to be used in a 400 V UHV integrated circuit.  相似文献   

9.
庄翔  乔明  张波  李肇基 《中国物理 B》2012,21(3):037305
This paper discusses the breakdown mechanism and proposes a new simulation and test method of breakdown voltage (BV) for an ultra-high-voltage (UHV) high-side thin layer silicon-on-insulator (SOI) p-channel low-density metal-oxide semiconductor (LDMOS). Compared with the conventional simulation method, the new one is more accordant with the actual conditions of a device that can be used in the high voltage circuit. The BV of the SOI p-channel LDMOS can be properly represented and the effect of reduced bulk field can be revealed by employing the new simulation method. Simulation results show that the off-state (on-state) BV of the SOI p-channel LDMOS can reach 741 (620) V in the 3-μm-thick buried oxide layer, 50-μm-length drift region, and at -400 V back-gate voltage, enabling the device to be used in a 400 V UHV integrated circuit.  相似文献   

10.
李琦  李海鸥  黄平奖  肖功利  杨年炯 《中国物理 B》2016,25(7):77201-077201
A novel silicon-on-insulator(SOI) high breakdown voltage(BV) power device with interlaced dielectric trenches(IDT) and N/P pillars is proposed. In the studied structure, the drift region is folded by IDT embedded in the active layer,which results in an increase of length of ionization integral remarkably. The crowding phenomenon of electric field in the corner of IDT is relieved by the N/P pillars. Both traits improve two key factors of BV, the ionization integral length and electric field magnitude, and thus BV is significantly enhanced. The electric field in the dielectric layer is enhanced and a major portion of bias is borne by the oxide layer due to the accumulation of inverse charges(holes) at the corner of IDT.The average value of the lateral electric field of the proposed device reaches 60 V/μm with a 10 μm drift length, which increases by 200% in comparison to the conventional SOI LDMOS, resulting in a breakdown voltage of 607 V.  相似文献   

11.
乔明  张波  李肇基  方健  周贤达 《物理学报》2007,56(7):3990-3995
提出一种SOI基背栅体内场降低BG REBULF(back-gate reduced BULk field)耐压技术. 其机理是背栅电压诱生界面电荷,调制有源区电场分布,降低体内漏端电场,提高体内源端电场,从而突破习用结构的纵向耐压限制,提高器件的击穿电压. 借助二维数值仿真,分析背栅效应对厚膜高压SOI LDMOS (>600V) 击穿特性的影响,在背栅电压为330V时,实现器件击穿电压1020V,较习用结构提高47.83%. 该技术的提出,为600V以上级SOI基高压功率器件和高压集成电路的实现提供了一种新的设计思路. 关键词: SOI 背栅 体内场降低 LDMOS  相似文献   

12.
王骁玮  罗小蓉  尹超  范远航  周坤  范叶  蔡金勇  罗尹春  张波  李肇基 《物理学报》2013,62(23):237301-237301
本文提出一种高k介质电导增强SOI LDMOS新结构(HK CE SOI LDMOS),并研究其机理. HK CE SOI LDMOS的特征是在漂移区两侧引入高k介质,反向阻断时,高k介质对漂移区进行自适应辅助耗尽,实现漂移区三维RESURF效应并调制电场,因而提高器件耐压和漂移区浓度并降低导通电阻. 借助三维仿真研究耐压、比导通电阻与器件结构参数之间的关系. 结果表明,HK CE SOI LDMOS与常规超结SOI LDMOS相比,耐压提高16%–18%,同时比导通电阻降低13%–20%,且缓解了由衬底辅助耗尽效应带来的电荷非平衡问题. 关键词: k介质')" href="#">高k介质 绝缘体上硅 (SOI) 击穿电压 比导通电阻  相似文献   

13.
李威  郑直  汪志刚  李平  付晓君  何峥嵘  刘凡  杨丰  向凡  刘伦才 《中国物理 B》2017,26(1):17701-017701
A novel structure is proposed for doubling the vertical breakdown voltage of silicon-on-insulator(SOI) devices. In this new structure, the conventional buried oxide(BOX) in an SOI device is split into two sections: the source-section BOX and the drain-section BOX. A highly-doped Si layer, referred to as a non-depletion potential-clamped layer(NPCL), is positioned under and close to the two BOX sections. In the split BOXes and the Si region above the BOXes, the blocking voltage(BV) is divided into two parts by the NPCL. The voltage in the NPCL is clamped to be nearly half of the drain voltage. When the drain voltage approaches a breakdown value, the voltage sustained by the source-section BOX and the Si region under the source are nearly the same as the voltage sustained by the drain-section BOX and the Si region under the drain. The vertical BV is therefore almost doubled. The effectiveness of this new structure was verified for a P-channel SOI lateral double-diffused metal-oxide semiconductor(LDMOS) and can be applied to other high-voltage SOI devices. The simulation results show that the BV in an NPCL P-channel SOI LDMOS is improved by 55% and the specific on-resistance(Ron,sp) is reduced by 69% in comparison to the conventional structure.  相似文献   

14.
A low on-resistance(Ron,sp) integrable silicon-on-insulator(SOI) n-channel lateral double-diffused metal-oxide-semiconductor(LDMOS) is proposed and its mechanism is investigated by simulation.The LDMOS has two features:the integration of a planar gate and an extended trench gate(double gates(DGs));and a buried P-layer in the N-drift region,which forms a triple reduced surface field(RESURF)(TR) structure.The triple RESURF not only modulates the electric field distribution,but also increases N-drift doping,resulting in a reduced specific on-resistance(Ron,sp) and an improved breakdown voltage(BV) in the off-state.The DGs form dual conduction channels and,moreover,the extended trench gate widens the vertical conduction area,both of which further reduce the Ron,sp.The BV and Ron,sp are 328 V and 8.8 m.cm2,respectively,for a DG TR metal-oxide-semiconductor field-effect transistor(MOSFET) by simulation.Compared with a conventional SOI LDMOS,a DG TR MOSFET with the same dimensional device parameters as those of the DG TR MOSFET reduces Ron,sp by 59% and increases BV by 6%.The extended trench gate synchronously acts as an isolation trench between the high-voltage device and low-voltage circuitry in a high-voltage integrated circuit,thereby saving the chip area and simplifying the fabrication processes.  相似文献   

15.
《中国物理 B》2021,30(6):67303-067303
A novel terminal-optimized triple RESURF LDMOS(TOTR-LDMOS) is proposed and verified in a 0.25-μm bipolarCMOS-DMOS(BCD) process. By introducing a low concentration region to the terminal region, the surface electric field of the TOTR-LDMOS decreases, helping to improve the breakdown voltage(BV) and electrostatic discharge(ESD) robustness. Both traditional LDMOS and TOTR-LDMOS are fabricated and investigated by transmission line pulse(TLP) tests,direct current(DC) tests, and TCAD simulations. The results show that comparing with the traditional LDMOS, the BV of the TOTR-LDMOS increases from 755 V to 817 V without affecting the specific on-resistance(R_(on,sp)) of 6.99 ?·mm~2.Meanwhile, the ESD robustness of the TOTR-LDMOS increases by 147%. The TOTR-LDMOS exhibits an excellent performance among the present 700-V LDMOS devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号