首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 80 毫秒
1.
Spin transport properties in a non-uniform quantum wire (QW) in the presence of both the Rashba and Dresselhaus spin–orbit couplings (SOCs) is investigated by using the non-equilibrium Green's function (NEGF) method combined with the Landauer Büttiker formalism. It is found that such a non-uniform quantum wire exhibits considerable spin polarization in its conductance in the influence of both the Rashba and Dresselhaus SOCs, and that the two SOCs' strengths strongly affect both the magnitude and sign of the electron spin polarization. Interestingly, the Rashba and Dresselhaus SOCs play the same modulating role in the electron spin polarization. The proposed nanostructure can potentially be utilized to devise an all-electrical spintronic device.  相似文献   

2.
Using self-flux method,we have successfully grown the parent phase of the single crystals of CaFeAsF1-x.The X-ray di?raction indicates good crystallinity.In-plane resistivity shows a bad metallic behavior with a sharp drop of resistivity at about T SDW=119K.This anomaly is associated with the possible spin density wave(SDW)order.Interestingly near T SDW,the resistivity exhibits a cusp-like feature,which may be understood as the strong coupling effect between the electrons and the antiferromagnetic(AF)spin fluctuations.A reduction of fluorine or application of a high pressure will suppress the SDW feature and induce superconductivity.Hall effect measurements reveal a positive Hall coefficient below T SDW indicating a dominant role of the hole-like charge carriers in the parent phase.Strong magnetoresistance has been observed below T SDW suggesting multiple conduction channels of the charge carriers.  相似文献   

3.
4.
A layered Cu–Cr–S structure doped with Ga ions and consisting of single-crystal CuCrS2 layers, embedded with thin plates of spinel phases CuCr2S4 and CuGaxCr2–xS4, has been studied using the magnetic resonance and magnetic susceptibility methods. The Curie temperature and the saturation magnetization of the spinel phases of the samples have been determined. The spinel phase layer thickness has been estimated.  相似文献   

5.
We studied spin-dependent transport in monolayer graphene with a spin–orbit barrier, a narrow strip in which the spin–orbit interaction is not zero. When the Fermi energy is between the two spin-split bands, the structure can be used to generate spin-polarized current. For a strong enough Rashba strength, a thick enough barrier or a low enough Fermi energy, highly spin-polarized current is generated (polarization ∼0.7–0.850.70.85). Under these conditions, the spin direction of the transmitted electron is approximately perpendicular to the direction of motion. This shows that graphene spin–orbit nanostructures are useful for the development of graphene spintronic devices.  相似文献   

6.
Metal–semiconductor Janus nanostructures with asymmetry and directionality have recently aroused significant interest, both in fundamental light–matter interactions mechanism and in technological applications. Here we report the synthesis of different Au–ZnO Janus nanostructures via a facile one-pot colloid method. The growth mechanism is revealed by a series of designed synthesis experiments. The light absorption properties are determined by both the decrease of dipole oscillations of the free electrons and the plasmon-induced hot-electron transfer. Moreover, the finite-difference time-domain(FDTD) simulation method is used to elucidate the electric field distributions of these Janus nanostructures.  相似文献   

7.
We use the quantum jump method to study the photon statistics of a single laser-driven atom in the configuration where both lower levels are strongly coupled to the common upper level. Under certain conditions we show that, for almost degenerate lower levels, light and dark periods occur which are similar to those of the well-known Dehmelt V system. Analytic results for their mean lengths and other statistical properties are given. For large separation of the lower levels we prove an interesting bunching property by the photons in the resonance fluorescence near the dark resonance. We propose a realistic system for which these effects may be observed.  相似文献   

8.
Au–CdTe and Ag/Au–CdTe assembles were firstly investigated through the static interaction between positively charged cysteamine-stabilized CdTe quantum dots (QDs) and negatively charged Au or core/shell Ag/Au nano-particles (NCs). The CdTe QDs synthesized in aqueous solution were capped with cysteamine which endowed them positive charges on the surface. Both Au and Ag/Au NCs were prepared through reducing precursors with gallic acid obtained from the hydrolysis of natural plant poly-phenols and favored negative charges on the surface of NCs. The fluorescence spectra of CdTe QDs exhibited strong quenching with the increase of added Au or Ag/Au NCs. Railey resonance scattering spectra of Au or Ag/Au NCs increased firstly and decreased latter with the concentration of CdTe QDs, accompanied with the solution color changing from red to purple and colorless at last. Experimental results on the effects of gallic acid, chloroauric acid tetrahydrate and other reagents demonstrated the static interaction occurred between QDs and NCs. This finding reveals the possibilities to design and control optical process and electromagnetic coupling in hybrid structures.  相似文献   

9.
The excitation of 3D levels of strontium atom by slow monoenergetic electrons has been studied experimentally. Thirty six excitation cross-sections were measured at 30-eV electron energy. Optical excitation functions for most of the transitions were recorded in the 0–200-eV electron-energy range. The excitation cross-section as a function of the principal quantum number has been found to correspond to a power law for all 3D series.  相似文献   

10.
We report on the results of analysis of the kinetics of charge–discharge current of Panasonic supercapacitors in a wide range of time from 10–1 to 104 s. The non-Debye behavior of relaxation observed earlier by us and other authors is confirmed experimentally, and the influence of the supercapacitor charging regime on this process for various previous histories (values of applied voltage, charging time, and load resistance) is analyzed. The results are compared with available experimental data for paper–oil and electrolytic capacitors and with the results of calculations in the linear response model. It is found that in contrast to conventional capacitors, the response of the supercapacitor under investigation to variations of the charging regime does not match the linear response model. The relation of this nonlinearity to processes in the double electric layer, the morphology of the porous electrode, and the effect of charge reversal in pores is considered.  相似文献   

11.
We propose a scheme for the effective polarization and manipulation of electron spin by using a quantum dot with both charge and spin bias. Using the equation of motion for Keldysh nonequilibrium Green function, we study the spin accumulation and polarization for the system. Through analytical analysis and a few numerical examples, it is demonstrated that fairly large spin accumulation and polarization can be produced due to the breakingsymmetry of the chemical potential for different electron spin in the leads. Moreover, the direction and the strength of the spin polarization can be conveniently controlled and tuned by varying the charge bias or the gate voltage.  相似文献   

12.
李宏  王炜路  公丕锋 《物理学报》2007,56(4):2405-2408
利用密度矩阵的方法,由多粒子体系的薛定谔方程得到了微观体系中电子输运的概率方程,由此推出了单量子阱的自旋电流和电荷流的表达式.研究发现,在某种条件下单量子阱中只存在自旋电流;同时还给出了左右自旋电流之间的关系.结果表明:当单量子阱中的电子发生自旋共振时,自旋电流出现极大值并且随着自旋退相干时间的减小而减小. 关键词: 自旋共振 自旋电流  相似文献   

13.
张力舒  周毅  代新月  赵珍阳  李辉 《中国物理 B》2017,26(7):73102-073102
Lead nanowire occupies a very important position in an electronic device. In this study, a genetic algorithm(GA)method has been used to simulate the Pb nanowire. The result shows that Pb nanowires are a multishell cylinder. Each shell consists of atomic rows wound up helically side by side. The quantum electron transport properties of these structures are calculated based on the non-equilibrium Green function(NEGF) combined with the density functional theory(DFT),which indicate that electronic transport ability increases gradually with the atomic number increase. In addition, the thickest nanowire shows excellent electron transport performance. It possesses great transmission at the Fermi level due to the strongest delocalization of the electronic state. The results provide valuable information on the relationship between the transport properties of nanowires and their diameter.  相似文献   

14.
黄耀清  郝成红  郑继明  任兆玉 《物理学报》2013,62(8):83601-083601
利用过渡金属掺杂的硅基团簇, 构建了一种自旋分子结; 并利用第一性原理方法, 对其电子自旋极化输运性质进行了研究. 计算表明, 通过过渡金属掺杂可以有效地产生自旋极化电流, 磁性金属Fe和非磁性金属Cr和Mn掺杂的体系呈现出较明显的自旋极化透射现象, 但分子结的自旋极化输运能力与团簇孤立状态下的磁矩无一致性.从Sc到Ni的掺杂, 体系的自旋极化透射能力先增大后迅速减小, 在Fe掺杂的Si12团簇中出现最大值. 关键词: 硅团簇 自旋极化输运 密度泛函理论 非平衡格林函数  相似文献   

15.
I present a method to calculate the ballistic transport properties of atomic-scale structures under bias. The electronic structure of the system is calculated using the Kohn-Sham scheme of density functional theory (DFT). The DFT eigenvectors are then transformed into a set of maximally localized Wannier functions (MLWFs) [N. Marzari and D. Vanderbilt, Phys. Rev. B 56 (1997) 12847]. The MLWFs are used as a minimal basis set to obtain the Hamitonian matrices of the scattering region and the adjacent leads,which are needed for transport calculation using the nonequilibrium Green's function formalism. The coupling of the scattering region to the semi-infinite leads is described by the self-energies of the leads. Using the nonequilibrium Green's function method, one calculates self-consistently the charge distribution of the system under bias and evaluates the transmission and current through the system. To solve the Poisson equation within the scheme of MLWFs I introduce a computationally efficient method. The method is applied to a molecular hydrogen contact in two transition metal monatomic wires (Cu and Pt). It is found that for Pt the I-V characteristics is approximately linear dependence, however, for Cu the I-V characteristics manifests a linear dependence at low bias voltages and exhibits apparent nonlinearity at higher bias voltages. I have also calculated the transmission in the zero bias voltage limit for a single CO molecule adsorbed on Cu and Pt monatomic wires. While a chemical scissor effect occurs for the Cu monatomic wire with an adsorbed CO molecule, it is absent for the Pt monatomic wire due to the contribution of d-orbitals at the Fermi energy.  相似文献   

16.
郑圆圆  任桂明  陈锐  王兴明  谌晓洪  王玲  袁丽  黄晓凤 《物理学报》2014,63(21):213101-213101
B3LYP/6-311++g**水平上预测了FeH2及FeH稳定构型讨论了其自旋极化效应,并与实验结果进行了比较.结果表明其基态分别为FeH2(5A1)和FeH(4?),自旋态对构型和物理性质均有显著影响.FeH2具有C2v对称性.势能与核间距的关系用4参数Murrell-Sorbie函数进行拟合得到其分析势能函数.由此推导出力常数和光谱数据,并由多体项展式理论导出了基态FeH2分子的分析势能函数.用这个分析势能函数分析表明:H+FeH生成FeH2(C2v)分子通道存在一个4.68 eV深的势阱,易生成H—Fe—H络合物分子.反应Fe+H2→HFeH,?H=-0.08305 eV,是放热反应.  相似文献   

17.
Ming Li  Xiao-jiang Long 《哲学杂志》2019,99(15):1914-1927
The effects of orientation and silicon chain length on the electronic transport properties for linear silicon chains sandwiched between two graphene electrodes are investigated by using non-equilibrium Green’s functions combined with density functional theory. Our results demonstrate that the conductance of single silicon chains can hardly be affected by its orientation, as there is negligible difference between the conductance of tilted and un-tilted chains, and the conductance is impacted greatly by the length of chains, i.e. the transmission coefficient is doubled for double chains. The equilibrium conductance of single silicon chains shows even-odd oscillating behavior, and its tendency decreases with the increase of the chain length. The non-equilibrium electronic transport properties for all types of chains are also calculated, and all current–voltage curves of silicon chains show a linear character. The frontier molecular orbitals, the total and projected density of states are used to analyse the electronic transport properties for all types of chains.  相似文献   

18.
阎世英 《中国物理 B》2008,17(8):2925-2931
Density functional theory (DFT) (B3P86) of Gaussian 03 has been used to optimize the structure of the Cr2 molecule, a transition metal element molecule. The result shows that the ground state for the Cr2 molecule is a 13- multiple state, indicating that there exists a spin polarization effect in the Cr2 molecule. Meanwhile, we have not found any spin pollution because the wave function of the ground state does not mingle with wave functions of higher-energy states. So the ground state for Cr2 molecule being a 13-multiple state is indicative of spin polarization effect of the Cr2 molecule among transition metal elements, that is, there are 12 parallel spin electrons in the Cr2 molecule. The number of non-conjugated electrons is greatest. These electrons occupy different spatial orbitals so that the energy of the Cr2 molecule is minimized. It can be concluded that the effect of parallel spin in the Cr2 molecule is larger than the effect of the conjugated molecule, which is obviously related to the effect of electron d delocalization. In addition, the Murrell Sorbie potential functions with the parameters for the ground state and other states of the Cr2 molecule are derived. The dissociation energy De for the ground state of the Cr2 molecule is 0.1034eV, equilibrium bond length Re is 0.3396 nm, and vibration frequency we is 73.81cm^-1. Its force constants f2, f3 and f4 are 0.0835, -0.2831 and 0.3535 aJ. nm^-4 respectively. The other spectroscopic data for the ground state of the Cr2 molecule ωeχe, Be and αe are 1.2105, 0.0562 and 7.2938 x 10^-4cm^-1 respectively.  相似文献   

19.
研究了基于石墨烯电极的蒽醌分子器件的开关特性.分别选取了锯齿型和扶手椅型的石墨烯纳米带作为电极,考虑蒽醌基团在氧化还原反应下的两种构型,即氢醌(HQ)分子和蒽醌(AQ)分子,构建了双电极分子结,讨论了氧化还原反应和不同的电极结构对蒽醌分子器件开关特性的影响.研究发现,无论是锯齿型石墨烯电极还是扶手椅型石墨烯电极,HQ构...  相似文献   

20.
The rapid miniaturization of electronic devices motivates research interests in quantum transport. Recently time-dependent quantum transport has become an important research topic. Here we review recent progresses in the development of time-dependent density-functional theory for quantum transport including the theoretical foundation and numerical algorithms. In particular, the reducedsingle electron density matrix based hierarchical equation of motion, which can be derived from Liouville–von Neumann equation, is reviewed in details. The numerical implementation is discussed and simulation results of realistic devices will be given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号