首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The spin Hall effect in a two-dimensional electron system on honeycomb lattice with both intrinsic and Rashba spin-orbit couplings is studied numerically. Integer quantized spin Hall conductance is obtained at the zero Rashba coupling limit when electron Fermi energy lies in the energy gap created by the intrinsic spin-orbit coupling, in agreement with recent theoretical prediction. While nonzero Rashba coupling destroys electron spin conservation, the spin Hall conductance is found to remain near the quantized value, being insensitive to disorder scattering, until the energy gap collapses with increasing the Rashba coupling. We further show that the charge transport through counterpropagating spin-polarized edge channels is well quantized, which is associated with a topological invariant of the system.  相似文献   

2.
We report a theoretical investigation on spin-Hall conductance fluctuation of disordered four-terminal devices in the presence of Rashba or/and Dresselhaus spin-orbital interactions in two dimensions. As a function of disorder, the spin-Hall conductance GsH shows ballistic, diffusive, and insulating transport regimes. For given spin-orbit interactions, a universal spin-Hall conductance fluctuation (USCF) is found in the diffusive regime. The value of the USCF depends on the spin-orbit coupling tso but is independent of other system parameters. It is also independent of whether Rashba or Dresselhaus or both spin-orbital interactions are present. When tso is comparable to the hopping energy t, the USCF is a universal number approximately 0.18e/4pi. The distribution of GsH crosses over from a Gaussian distribution in the metallic regime to a non-Gaussian distribution in the insulating regime as the disorder strength is increased.  相似文献   

3.
M Chen  S Wan 《J Phys Condens Matter》2012,24(32):325502, 1-325502, 6
We study a star lattice with Rashba spin-orbit coupling and an exchange field and find that there is a quantum anomalous Hall effect in this system, and that there are five energy gaps at Dirac points and quadratic band crossing points. We calculate the Berry curvature distribution and obtain the Hall conductivity (Chern number ν) quantized as integers, and find that ν?=-?1,2,1,1,2 when the Fermi level lies in these five gaps. Our model can be viewed as a general quantum anomalous Hall system and, in limit cases, can give what the honeycomb lattice and kagome lattice give. We also find that there is a nearly flat band with ν?=?1 which may provide an opportunity for realizing the fractional quantum anomalous Hall effect. Finally, the chiral edge states on a zigzag star lattice are given numerically, to confirm the topological property of this system.  相似文献   

4.
王启文  红兰 《物理学报》2012,61(1):17107-017107
在考虑Rashba自旋-轨道耦合的条件下, 采用二次幺正变换和变分方法研究了二维抛物量子点中由于电子与体纵光学声子的耦合作用形成的极化子在基态Zeeman分裂能级上的自旋弛豫过程.这一过程主要是通过吸收或发射一个形变势或压电声学声子完成.具体分析了强、弱耦合两种极限下极化子自旋弛豫率与外磁场、量子点半径、Landau因子参数、Rashba自旋轨道耦合参数的变化关系. 关键词: 自旋弛豫 极化子 Rashba自旋轨道耦合 量子点  相似文献   

5.
宋艳鹏  陈洪祥  郭建刚  陈小龙 《物理学报》2018,67(12):127101-127101
在强关联电子体系中,轨道、自旋和晶格等自由度之间的相互作用一直是研究的热点.这些自由度之间的竞争和共存产生了复杂新奇的物理现象,如超导现象、量子相变、自旋有序、拓扑相变、金属绝缘转变等,这些丰富的物理现象来源于不同的有序态或量子涨落之间的竞争和耦合.自旋轨道耦合作用是指粒子的自旋角动量和轨道角动量之间的相互作用,在4d/5d基化合物中,由于电子的运动速度较快,自旋轨道耦合的效应不可忽视,可能表现出与3d基化合物不同的物性.例如,在含4d/5d过渡族金属元素的超导体中,其电子配对的机制可能不同于常规的s波Bardeen-Cooper-Schrieffer超导体.本文以几种典型的4d/5d基超导体为例,对其晶体结构和超导物性及其内在联系进行了详细论述,重点探讨了阴离子共价键强弱对晶体结构、相变和超导物性的影响,希望引起相关研究者对该类超导体的重视.  相似文献   

6.
朱瑞 《计算物理》2007,24(6):693-697
讨论考虑洪特耦合的两带赫伯德模型得到的一维自旋轨道模型中自旋-轨道能隙的产生.运用SU(4)赝费米子表象下的平均场理论,计算求得价键序参数、准粒子激发谱能隙和自旋、轨道密度-密度关联函数随系统耦合参数变化的结果.随洪特耦合相互作用由零开始增强,系统激发谱能隙逐渐打开,并且系统在参数取值为J1/J2=1/3处由具有阻错的无序状态相变到自旋铁磁有序和轨道反铁磁有序的状态.  相似文献   

7.
张林  汪军 《理论物理通讯》2011,55(4):709-714
We report a theoretical study on producing electrically spin-polarized current in the Rashba ring with parallel double dots embedded, which are subject to two time-dependent microwave fields. By means of the Keldysh Green's function method, we present an analytic result of the pumped current at adiabatic limit and demonstrate that the interplay between the quantum pumping effectand spin-dependent quantum interference can lead to an arbitrarily controllable spin-polarized current in the device. The magnitude and direction of the charge and spin current can be effectively modulated by system parameters such as the pumping phase difference, Rashba precession phase, and the dynamic phase difference of electron traveling in two arms of ring; moreover, thespin-polarization degree of the charge current can also be tuned in the range [-∞, +∞]. Our findings may shed light on the all-electric way to produce the controllable spin-polarized charge current in the field of spintronics.  相似文献   

8.
We report a theoretical study of the equilibrium spin current flowing in a quantum dot system. Two electrodes are the two-dimensional electron gas with Rashba or Dresselhaus spin-orbital interaction. By using the Keldysh Green's function technique, we demonstrated that a nonzero spin current can flow in the system without bias. At the weak coupling between electrodes and the quantum dot, the spin current is approximately proportional to the cross product of two average pseudo-magnetizations in two electrodes, which agrees with the result of the linear response theory; whereas at the opposite case, the strong coupling between the quantum dot and electrodes can lead to a non-sinusoidal behavior of the equilibrium spin current. These behaviors of the equilibrium spin current are similar to the Josephson current.  相似文献   

9.
We report on calculation of spin-dependent thermal transport through a quantum ring with the Rashba spin-orbit interaction. The quantum ring is connected to two electron reservoirs with different temperatures. Tuning the Rashba coupling constant, degenerate energy states are formed leading to a suppression of the heat and thermoelectric currents. In addition, the quantum ring is coupled to a photon cavity with a single photon mode and linearly polarized photon field. In a resonance regime, when the photon energy is approximately equal to the energy spacing between two lowest degenerate states of the ring, the polarized photon field can significantly control the heat and thermoelectric currents in the system. The roles of the number of photon initially in the cavity, and electron–photon coupling strength on spin-dependent heat and thermoelectric currents are presented.  相似文献   

10.
杨圆  陈帅  李小兵 《物理学报》2018,67(23):237101-237101
本文研究了各向同性square-octagon晶格在内禀自旋轨道耦合、Rashba自旋轨道耦合和交换场作用下的拓扑相变,同时引入陈数和自旋陈数对系统进行拓扑分类.系统在自旋轨道耦合和交换场的影响下会出现许多拓扑非平庸态,包括时间反演对称破缺的量子自旋霍尔态和量子反常霍尔态.特别的是,在时间反演对称破缺的量子自旋霍尔效应中,无能隙螺旋边缘态依然能够完好存在.调节交换场或者填充因子的大小会导致系统发生从时间反演对称破缺的量子自旋霍尔态到自旋过滤的量子反常霍尔态的拓扑相变.边缘态能谱和自旋谱的性质与陈数和自旋陈数的拓扑刻画完全一致.这些研究成果为自旋量子操控提供了一个有趣的途径.  相似文献   

11.
We study shot noise for spin-polarized currents and entangled electron pairs in a four-probe (beam-splitter) geometry with a local Rashba spin-orbit (s-o) interaction in the incoming leads. Within the scattering formalism we find that shot noise exhibits Rashba-induced oscillations with continuous bunching and antibunching. We show that entangled states and triplet states can be identified via their Rashba phase in noise measurements. For two-channel leads, we find an additional spin rotation due to s-o induced interband coupling which enhances spin control. We show that the s-o interaction deter-mines the Fano factor, which provides a direct way to measure the Rashba coupling constant via noise.  相似文献   

12.
The energy spectrum, ballistic conductance of an electron on the surface of a Kane type semiconductor hollow cylinder has been calculated by using the Kane equation with an additional term that takes into account the spin-orbit (SO) interaction. This term, known as Rashba term, occurs for asymmetric quantum wells, where two directions on the normal n are physically nonequivalent. If Rashba spin-orbital interaction is incorporated into energy spectrum, it leads to the emergence of new extrema. We obtained electron energy spectrum, which depends on the sign of the effective spin orbital constant. The energy spectrum of electrons has two branches when the magnetic field does not exist. One of these branches has only one minimum while the other branch has one maximum around k = 0 and two minima. The external magnetic field can control these extrema which occur in the event transport. The results were used to obtain the ballistic conductance at finite temperature of the Kane type hollow cylinder. It has been found that the presence of additional local extremum points in the subband of the electronic spectrum leads to a nonmonotonic dependence of the ballistic conductance of the system on the chemical potential. The g-factor of electrons was observed to depend on Rashba parameter in a linear manner. The effect of finite temperature smears out the sharp steps in the zero-temperature conductance.  相似文献   

13.
B.K. Pal  B. Basu 《Physics letters. A》2010,374(42):4369-4374
We have studied a quantum dot with Rashba spin-orbit interaction in noncommutative phase space. The energy eigenvalues are analogous to Landau energy levels. It is shown that this system is related with a physically realizable model of a quantum dot with Rashba spin-orbit interaction in a magnetic field whereby a relation is derived among the noncommutative parameters, spin-orbit coupling strength and magnetic field.  相似文献   

14.
We present a theoretical study of the spin-dependent conductance spectra in a FM/semiconductor quantum-dot (QD)/FM system. Both the Rashba spin-orbit (SO) coupling in the QD and spin-flip scattering caused by magnetic barrier impurities are taken into account. It is found that in the single-level QD system with parallel magnetic moments in the two FM leads, due to the interference between different tunneling paths through the spin-degenerate level, a dip or a narrow resonant peak can appear in the conductance spectra, which depends on the property of the spin-flip scattering. When the magnetizations of the two FM leads are noncollinear, the resonant peak can be transformed into a dip. The Rashba SO coupling manifests itself by a Rashba phase factor, which changes the phase information of every tunneling path and can greatly modulate the conductance. When the QD has multiple levels, the Rashba interlevel spin-flip effect appears, which changes the topological property of the structure. Its interplay with the Rashba phase can directly tune the coupling strengths between dot and leads, and can result in switching from resonance into antiresonance in the conductance spectra.  相似文献   

15.
We study Andreev bound states (ABS) and the resulting charge transport of a Rashba superconductor (RSC) where two-dimensional semiconductor (2DSM) heterostructures are sandwiched by spin-singlet s-wave superconductor and ferromagnet insulator. ABS becomes a chiral Majorana edge mode in the topological phase (TP). We clarify two types of quantum criticality about the topological change of ABS near a quantum critical point (QCP), whether or not ABS exists at QCP. In the former type, ABS has an energy gap and does not cross at zero energy in the nontopological phase. These complex properties can be detected by tunneling conductance between normal metal-RSC junctions.  相似文献   

16.
In Thouless pump, the charge transport in a one-dimensional insulator over an adiabatic cycle is topologically quantized. For nonequilibrium initial states, however, interband coherence will induce a previously unknown contribution to Thouless pumping. Though not geometric in nature, this contribution is independent of the time scale of the pumping protocol. In this work, we perform a detailed analysis of our previous finding [H.L. Wang et al., Phys. Rev. B 91, 085420 (2015)] in an already available cold-atom setup. We show that initial states with interband coherence can be obtained via a quench of the system’s Hamiltonian. Adiabatic pumping in the post-quench system are then examined both theoretically and numerically, in which the interband coherence is shown to play an important role and can hence be observed experimentally. By choosing adiabatic protocols with different switching-on rates, we also show that the contribution of interband coherence to adiabatic pumping can be tuned. It is further proposed that the interband coherence induced correction to Thouless pumping may be useful in capturing a topological phase transition point. All our results have direct experimental interests.  相似文献   

17.
Jian Feng 《中国物理 B》2022,31(9):90305-090305
Topological superfluid state is different from the normal superfluid one due to the excitation energy gap on the boundary. How to obtain the topological superfluid state by using spin-orbit coupling to control the s-waves paired mass-imbalanced Fermi gas is a recent novel topic. In this paper, we study the topological superfluid phase diagram of two-dimensional mass-imbalanced Fermi gas with Rashba spin-orbit coupling at zero temperature. We find that due to the competition among mass imbalance, pairing interaction and spin-orbit coupling, there is a double-well structure in the thermodynamic potential, which affects the properties of the ground state of the system. We comprehensively give the phase diagrams of the system on the plane of spin-orbit coupling and chemical potential, and the phase diagrams on the plane of the reduced mass ratio and two-body binding energy. This study not only points out the stable region of topological superfluid state of mass-imbalanced Fermi gas, but also provides a detailed theoretical basis for better observation of topological superfluid state in experiments.  相似文献   

18.
The quantum spin Hall (QSH) effect and the quantum anomalous Hall (QAH) effect in Lieblattice are investigated in the presence of both Rashba spin-orbit coupling (SOC) anduniform exchange field. The Lieb lattice has a simple cubic symmetry, which ischaracterized by the single Dirac-cone per Brillouin zone and the middle flat band in theband structure. The intrinsic SOC is essentially needed to open the full energy gap in thebulk. The QSH effect could survive even in the presence of the exchange field. In terms ofthe first Chern number and the spin Chern number, we study the topological nature and thetopological phase transition from the time-reversal symmetry broken QSH effect to the QAHeffect. For Lieb lattice ribbons, the energy spectrum and the wave-function distributionsare obtained numerically, where the helical edge states and the chiral edge states revealthe non-trivial topological QSH and QAH properties, respectively.  相似文献   

19.
We explore the non-commutative (NC) effects on the energy spectrum of a two-dimensional hydrogen atom. We consider a confined particle in a central potential and study the modified energy states of the hydrogen atom in both coordinates and momenta of non-commutativity spaces. By considering the Rashba interaction, we observe that the degeneracy of states can also be removed due to the spin of the particle in the presence of NC space. We obtain the upper bounds for both coordinates and momenta versions of NC parameters by the splitting of the energy levels in the hydrogen atom with Rashba coupling. Finally, we find a connection between the NC parameters and Lorentz violation parameters with the Rashba interaction.  相似文献   

20.
We study the effect of Rashba spin-orbit coupling on the Hofstadter spectrum of a two-dimensional tight-binding electron system in a perpendicular magnetic field. We obtain the generalized coupled Harper spin-dependent equations which include the Rashba spin-orbit interaction and solve for the energy spectrum and spin polarization. We investigate the effect of spin-orbit coupling on the fractal energy spectrum and the spin polarization for some characteristic states as a function of the magnetic flux α and the spin-orbit coupling parameter. We characterize the complexity of the fractal geometry of the spin-dependent Hofstadter butterfly with the correlation dimension and show that it grows quadratically with the amplitude of the spin-orbit coupling. We study some ground state properties and the spin polarization shows a fractal-like behavior as a function of α, which is demonstrated with the exponent close to unity of the decaying power spectrum of the spin polarization. Some degree of spin localization or distribution around +1 or -1, for small spin-orbit coupling, is found with the determination of the entropy function as a function of the spin-orbit coupling. The excited states show a more extended (uniform) distribution of spin states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号