首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ground-state properties and quantum phase transitions (QPTs) of the one-dimensional bond-alternative XXZ model are investigated by the infinite time-evolving block decimation (iTEBD) method.The bond-alternative effects on its ground-state phase diagram are discussed in detail.Once the bond alternation is taken into account,the antiferromagnetic phase (Δ 1) will be destroyed at a given critical point and change into a disordered phase without nonlocal string order.The QPT is shown to be second-order,and the whole phase diagram is provided.For the ferromagnetic phase region (Δ-1),the critical point r c always equals 1 (independent of Δ),and the QPT for this case is shown to be first-order.The dimerized Heisenberg model is also discussed,and two disordered phases can be distinguished by with or without nonlocal string orders.Both the bipartite entanglement and the fidelity per site,as two kinds of model-independent measures,are capable of describing all the QPTs in such a quantum model.  相似文献   

2.
The critical phenomena of a Brillouin laser are analyzed theoretically. The results show that the behavior of a Brillouin laser in the threshold region is a second-order phase transition. The critical point of the phase transition is the gain threshold of the Brillouin laser, and the order parameter is the amplitude of the Stokes component in stimulated Brillouin scattering. The critical slow-down phenomenon and the typical characteristics in phase transition are demonstrated. Further work on the combination of nonlinear optics and phase transition in the Brillouin laser may lead to a new view and findings that could be significant for both fields.  相似文献   

3.
We propose a novel self-consistent mean field approximation method by means of a Fierz transformation,taking the Nambu-Jona-Lasinio model as an example.This new self-consistent mean field approximation introduces a new free parameter a to be determined experimentally.When a assumes the value of 0.5,the approximation reduces to the mean field calculation commonly used in the past.Subsequently,we study the influence of the undetermined parameter a on the phase diagram of the two-flavor strong interaction matter.The value of a plays a crucial role in the strong interaction phase diagram,as it not only changes the position of the phase transition point of strong interaction matter,but also affects the order of the phase transition.For example,when a is greater than the critical valueαc = 0.71,then the strong interaction matter phase diagram no longer has a critical end point.In addition,in the case of zero temperature and finite density,we found that when a1.044,the pseudo-critical chemical potential corresponds to ~4-5 times the saturation density of the nuclear matter,which agrees with the expected results from the picture of the hadrons degree of freedom.The resulting equations of state of strong interaction matter at low temperatures and high densities will have an important impact on studies concerning the mass radius relationship of neutron stars and the merging process of binary neutron stars.  相似文献   

4.
The thermodynamics and the phase diagram of random field Ising model (RFIM) on Bethe lattice are studied by using a replica trick. This lattice is placed in an external magnetic field (B). A Gaussian distribution of random field (hi) with zero mean and variance hi2 = HR2F is considered. The free-energy (F ), the magnetization (M) and the order parameter (q) are investigated for several values of coordination number (z). The phase diagram shows several interesting behaviours and presents tricritical point at critical temperature TC = J/k and when HRF = 0 for finite z. The free-energy (F) values increase as T increases for different intensities of random field (HRF) and finite z. The internal energy (U) has a similar behaviour to that obtained from the Monte Carlo simulations. The ground state of magnetization decreases as the intensity of random field HRF increases. The ferromagnetic (FM)-paramagnetic (PM) phase boundary is clearly observed only when z →∞. While FM-PM-spin glass (SG) phase boundaries are present for finite z. The magnetic susceptibility (χ) shows a sharp cusp at TC in a small random field for finite z and rounded different peaks on increasing HRF.  相似文献   

5.
In the framework of nonperturbative quantum field theory,the critical phenomena of one-dimensional extended Hubbard model (EHM) at half-filling are discussed from weak to intermediate interactions.After the EHM being mapped into two decoupled sine-Gordon models,the ground state phase diagram of the system is derived in an explicit way.It is confirmed that the coexisting phases appear in different interaction regimes which cannot be found by conventional theoretical methods.The diagram shows that there are seven different phase regions in the ground state,which seems not to be the same as previous discussions,especially the boundary between the phase separation and condensed phase regions.The phase transition properties of the model between various phase regions are studied in detail.  相似文献   

6.
A semi-empirical equation of state model for aluminum in a warm dense matter regime is constructed. The equation of state, which is subdivided into a cold term, thermal contributions of ions and electrons, covers a broad range of phase diagram from solid state to plasma state. The cold term and thermal contribution of ions are from the Bushman–Lomonosov model, in which several undetermined parameters are fitted based on equation of state theories and specific experimental data. The Thomas–Fermi–Kirzhnits model is employed to estimate the thermal contribution of electrons. Some practical modifications are introduced to the Thomas–Fermi–Kirzhnits model to improve the prediction of the equation of state model. Theoretical calculation of thermodynamic parameters, including phase diagram, curves of isothermal compression at ambient temperature, melting, and Hugoniot, are analyzed and compared with relevant experimental data and other theoretical evaluations.  相似文献   

7.
We investigate the critical behaviour of an epidemical model in a diffusive population mediated by a static vector environment on a 2D network. It is found that this model presents a dynamical phase transition from disease-free state to endemic state with a finite population density. Finite-size and short-time dynamic scaling relations are used to determine the critical population density and the critical exponents characterizing the behaviour near the critical point. The results are compatible with the universality class of directed percolation coupled to a conserved diffusive field with equal diffusion constants.  相似文献   

8.
For the matrix product system of a one-dimensional spin-1/2 chain, we present a new model of quantum2 phase transitions and find that in the thermodynamic limit, both sides of the critical point are respectively described by phases |Ψa 〉=|1··· 1 representing all particles spin up and |Ψb 〉=|0··· 0 representing all particles spin down, while the phase transition point is an isolated intermediate-coupling point where√ the two phases coexist equally, which is2 described by the so-called N-qubit maximally entangled GHZ state |Ψpt =√2/2(|1··· 1 +|0··· 0). At the critical point,2the physical quantities including the entanglement are not discontinuous and the matrix product system has longrange correlation and N-qubit maximal entanglement. We believe that our work is helpful for having a comprehensive understanding of quantum phase transitions in matrix product states of one-dimensional spin chains and of potential directive significance to the preparation and control of one-dimensional spin lattice models with stable coherence and N-qubit maximal entanglement.  相似文献   

9.
Our recent scanning tunneling microscopy (STM) studies of the NaFelxCoxAs phase diagram over a wide range of dopings and temperatures are reviewed. Similar to the high-Tc cuprates, the iron-based superconductors lie in close proximity to a magnetically ordered phase. Therefore, it is widely believed that magnetic interactions or fluctuations play an important role in triggering their Cooper pairings. Among the key issues regarding the electronic phase diagram are the properties of the parent spin density wave (SDW) phase and the superconducting (SC) phase, as well as the interplay between them. The NaFe l-xCoxAs is an ideal system for resolving these issues due to its rich electronic phases and the charge-neutral cleaved surface. In our recent work, we directly observed the SDW gap in the parent state, and it exhibits unconventional features that are incompatible with the simple Fermi surface nesting picture. The optimally doped sample has a single SC gap, but in the underdoped regime we directly viewed the microscopic coexistence of the SDW and SC orders, which compete with each other. In the overdoped regime we observed a novel pseudogap-like feature that coexists with supercon- ductivity in the ground state, persists well into the normal state, and shows great spatial variations. The rich electronic structures across the phase diagram of NaFel_xCoxAs revealed here shed important new light for defining microscopic models of the iron-based superconductors. In particular, we argue that both the itinerant electrons and local moments should be considered on an equal footing in a realistic model.  相似文献   

10.
A new procedure of trial variational wave functional is proposed for invostigating the mass reuormalizationand the local structure of the ground state of a one-dimensional quantum sine-Gorrdonm model with linear spatial modu-lation, whose ground state differs from that without modulation. Thc phase diagram obtained in parameters (αA 2,β2)plane shows that the vertical part of the boundary between soliton lattice phase and iucommensurate (IC) phase withvanishing gap sticks at β2 = 4, the IC phase can only appear forβ2 > 47r and thc IC phase regime is enlarged withincreasing spatial modulation in the case of definite parameter αA-2. The transition is of the continuous type on thevertical part of the boundary, while it is of the first order on the boundary forβ2 > 47r.  相似文献   

11.
肖松  蔡九菊  王瑞利  刘明哲  刘飞 《中国物理 B》2009,18(12):5103-5110
In this paper, we study the dynamics of the synchronous totally asymmetric simple exclusion process (TASEP) on lattices with two consecutive junctions in a multiple-input-multiple-output (MIMO) traffic system, which consists of m sub-chains for the input and the output, respectively. In the middle of the system, there are N (nN synchronously increasing, the vertical phase boundary moves toward the right and the horizontal phase boundary moves toward the upside in the phase diagram. The boundary conditions of the system as well as the numbers of input and output determine the no-equilibrium stationary states, stationary-states phases, and phase boundaries. We use the results to compare with computer simulations and find that they are in very good agreement with each other.  相似文献   

12.
We propose the transverse velocity(β_T) dependence of the anti-deuteron to deuteron ratio as a new observable to search for the QCD critical point in heavy-ion collisions.The QCD critical point can attract the system evolution trajectory in the QCD phase diagram,which is known as the focusing effect.To quantify this effect,we employ the thermal and hadronic transport model to simulate the dynamical particle emission along a hypothetical focusing trajectory near the critical point.We found that the focusing effect can lead to anomalous β_T dependence on ■/p,■/d and ■/~3 He ratios.We examined the β_T dependence of ■/p and ■/d ratios of central Au+Au collisions at ■=7.7 to 200 GeV measured by the STAR experiment at RHIC.Surprisingly,we only observe a negative slope in β_T dependence of ■/d ratio at ■=19.6 GeV,which indicates the trajectory evolution has passed through the critical region.In the future,we could constrain the location of the critical point and/or width of the critical region by conducting precise measurements on the β_T dependence of the ■/d ratio at different energies and rapidity.  相似文献   

13.
王竹溪 《物理学报》1948,5(3):18-61
The dependence of the entropy of a homogeneous system on the composition is investigated with the help of a reversible adiabatic process which allows the change of composition by means of a semipermeable wall. The conditions of equilibrinm for phase transition and for homogeneous chemical reaction are derived in a new way. Next the criterion of minimum energy for constant entropy and volume is derived from the principle of increase of entropy. This criterion is then applied to obtain the conditions of equilibrium and stability with the help of Lagrange's multipliers. The conditions of stability are expressed in several alternative forms. Next the equilibrium properties of a binary system arc considered, and some types of phase diagram are explained by means of equations. The theory is extended to the general heterogeneous equilibrium of a system consisting of any number of independent components. A system of equations for the change of temperature, pressure, and composition are obtained and are solved by means of determinants. Next Planck's theory of a binary solution is extended to a solution consisting of several solnte components, with the same conclusion regarding the lowering of freezing point as for a binary solution. Finally Planck's theory on the number of coexisting phases for aone-component system is extended to a system consisting of k components with the result that a state with, σ coexisting phases is more stable than one with σ-1 phases: where σ is an integer not greater than k + 2.  相似文献   

14.
For the matrix product system of a one-dimensional spin-1/2 chain, we present a new model of quantum phase transitions and find that in the thermodynamic limit, both sides of the critical point are respectively described by phases |Ψa>=|1…1> representing all particles spin up and |Ψb>=|0…0> representing all particles spin down, while the phase transition point is an isolated intermediate-coupling point where the two phases coexist equally, which is described by the so-called N-qubit maximally entangled GHZ state |Ψpt>=√2/2(|1…1>+|0…0>). At the critical point, the physical quantities including the entanglement are not discontinuous and the matrix product system has long-range correlation and N-qubit maximal entanglement. We believe that our work is helpful for having a comprehensive understanding of quantum phase transitions in matrix product states of one-dimensional spin chains and of potential directive significance to the preparation and control of one-dimensional spin lattice models with stable coherence and N-qubit maximal entanglement.  相似文献   

15.
<正>One of the main purposes of heavy-ion collisions over a wide range of beam energy is to study the bulk properties of strong interaction matter and understand the Quantum Chromo Dynamics(QCD)phase diagram,which carries wealth of information of the phase transition and the possibly existing critical point of the strongly interacting system[1].Such system exists as hadron gases at lower temperature and low baryon density.By increasing the temperature or density,the boundary of the hadrons disappears and the confined quarks move  相似文献   

16.
Flow difference effect in the lattice hydrodynamic model   总被引:1,自引:0,他引:1       下载免费PDF全文
田钧方  贾斌  李新刚  高自友 《中国物理 B》2010,19(4):40303-040303
In this paper, a new lattice hydrodynamic model based on Nagatani's model [Nagatani T 1998 Physica A 261 599] is presented by introducing the flow difference effect. The stability condition for the new model is obtained by using the linear stability theory. The result shows that considering the flow difference effect leads to stabilization of the system compared with the original lattice hydrodynamic model. The jamming transitions among the freely moving phase, the coexisting phase, and the uniform congested phase are studied by nonlinear analysis. The modified KdV equation near the critical point is derived to describe the traffic jam, and kink--antikink soliton solutions related to the traffic density waves are obtained. The simulation results are consistent with the theoretical analysis for the new model.  相似文献   

17.
Based on the neutron and proton degrees of freedom, low-lying energy levels, E2, M1, and E0 transition strengths of nucleus ~(124)Te have been calculated by the neutron-proton interacting boson model. The calculated results are reasonably consistent with the experimental data. By comparing the key observables of the states at the critical point of U_(πv)(5)-O_(πv)(6) transition with the experimental data and calculated results, we show that the ~(124)Te is a possible nucleus at the critical point of the second-order phase transition from vibration to unstable rotation, and such a critical point exhibits slight triaxial rotation. The 0_2~+ state of ~(124)Te can be interpreted as the lowest state of the first-excited family of the intrinsic levels in the critical point symmetry.  相似文献   

18.
We present a new model of quantum phase transitions in matrix product systems of one-dimensional spin-1 chains and study the phases coexistence phenomenon. We find that in the thermodynamic limit the proposed system has three different quantum phases and by adjusting the control parameters we are able to realize any phase, any two phases equal coexistence and the three phases equM coexistence. At every critical point the physical quantities including the entanglement are not discontinuous and the matrix product system has long-range correlation and N-spin maximal entanglement. We believe that our work is helpful for having a comprehensive understanding of quantum phase transitions in matrix product states of one-dimensional spin chains and of certain directive significance to the preparation and control of one-dimensional spin lattice models with stable coherence and N-spin maximal entanglement.  相似文献   

19.
We present a new model of quantum phase transitions in matrix product systems of one-dimensional spin-1 chains and study the phases coexistence phenomenon. We find that in the thermodynamic limit the proposed system has three different quantum phases and by adjusting the control parameters we are able to realize any phase, any two phases equal coexistence and the three phases equal coexistence. At every critical point the physical quantities including the entanglement are not discontinuous and the matrix product system has long-range correlation and N-spin maximal entanglement. We believe that our work is helpful for having a comprehensive understanding of quantum phase transitions in matrix product states of one-dimensional spin chains and of certain directive significance to the preparation and control of one-dimensional spin lattice models with stable coherence and N-spin maximal entanglement.  相似文献   

20.
We numerically simulate the processing of the phase separation of the polymer blend-particle system under fluctuating fields by new discretization‘s form. Due to the presence of oscillatory particles which have an affinity for one of the components, the ordering mechanism of phase separation will be changed. By changing the oscillatory frequency ω and amplitude γ, we can find the formation of the striped structures either parallel or perpendicular to the oscillatory direction and obtain a diagram describing the orientational ordering of the domain structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号