首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have studied the dynamic and static processes occurring in disordered multiparticle colloidal Ag aggregates with natural structure and affecting their plasmonic absorption spectra under pico-and nanosecond pulsed laser radiations, as well as the physical origin responsible for these processes. We have shown that depending on the duration of the laser pulse,the mechanisms of laser modification of such aggregates can be associated both with changes in the resonant properties of the particles due to their heating and melting(picosecond irradiation mode) and with the particle shifts in the resonant domains of the aggregates(nanosecond pulses) which depend on the wavelength, intensity, and polarization of the radiation.These mechanisms result in formation of a narrow dip in the plasmonic absorption spectrum of the aggregates near the laser radiation wavelength and affect the shape and position of the dip. The effect of polydispersity of nanoparticle aggregates on laser photochromic reaction has been studied.  相似文献   

2.
We propose an optodynamical model of interaction of pulsed laser radiation with aggregates of spherical metallic nanoparticles embedded into host media. The model takes into account polydispersity of particles, pair interactions between the particles, dissipation of absorbed energy, heating and melting of the metallic core of particles and of their polymer adsorption layers, and heat exchange between electron and ion components of the particle material as well as heat exchange with the interparticle medium. Temperature dependence of the electron relaxation constant of the particle material and the effect of this dependence on interaction of nanoparticles with laser radiation are first taken into consideration. We study in detail light-induced processes in the simplest resonant domains of multiparticle aggregates consisting of two particles of an arbitrary size in aqueous medium. Optical interparticle forces are realized due to the light-induced dipole interaction. The dipole moment of each particle is calculated by the coupled dipole method (with correction for the effect of higher multipoles). We determined the role of various interrelated factors leading to photomodification of resonant domains and found an essential difference in the photomodification mechanisms between polydisperse and monodisperse nanostructures.  相似文献   

3.
A systematic analysis of the impact of laser radiation on disordered metal nanoparticle aggregates has been carried out using the simplest model of a resonance domain in the form of a bisphere. Such aggregates can be considered as a set of elementary domains with different eigen-resonant frequencies. The model is basically a pair of bound spherical nanoparticles having equal radii and covered with a polymer adsorption layer. A significant change in the resonance properties of the domain occurs due to the change of interparticle gaps under applied radiation. We investigated the temporal variation of parameters and hence optical characteristics of coupled Ag nanoparticles under pulsed laser radiation for different wavelengths, intensities and pulse durations and for different initial values of the interparticle gap.  相似文献   

4.
Interactions of pulsed laser radiation with resonance domains of multiparticle colloidal aggregates having an increasingly complex local environment are studied via an optodynamic model. The model is applied to the simplest configurations,such as single particles, dimers, and trimers consisting of mono- and polydisperse Ag nanoparticles. We analyze how the local environment and the associated local field enhancement by surrounding particles affect the optodynamic processes in domains, including their photomodification and optical properties.  相似文献   

5.
Even for a 100 nm interparticle distance or a small change in particle shape,optical Fano-like plasmonic resonance mode usually vanishes completely.It would be remarkable if stable Fano-like resonance could somehow be achieved in distinctly shaped nanoparticles for more than 1μm interparticle distance,which corresponds to the far electromagnetic field region.If such far-field Fano-like plasmonic resonance can be achieved,controlling the reversal of the far-field binding force can be attained,like the currently reported reversals for near-field cases.In this work,we have proposed an optical set-up to achieve such a robust and stable Fano-like plasmonic resonance,and comparatively studied its remarkable impact on controlling the reversal of near-and far-field optical binding forces.In our proposed set-up,the distinctly shaped plasmonic tetramers are half immersed(i.e.air-benzene)in an inhomogeneous dielectric interface and illuminated by?circular?polarized light.We have demonstrated significant differences between near-and far-field optical binding forces along with the Lorentz force field,which partially depends on the object’s shape.A clear connection is shown between the far-field binding force and the resonant modes,along with a generic mechanism to achieve controllable Fano-like plasmonic resonance and the reversal of the optical binding force in both far-and near-field configurations.  相似文献   

6.
Conditions for a change in the polarization selectivity of dips in the plasmon absorption spectra of fractal silver nanocomposites irradiated by pulsed laser radiation are studied. The energy thresholds of the polarization selectivity are evaluated, and the polarization and spectral threshold characteristics are compared. Mechanisms behind the correlation between the fractal structure of the nanocomposites, on the one hand, and their optical and photochromic properties, on the other hand, are discussed.  相似文献   

7.
Results of theoretical and experimental investigations into the spectra of acoustic signals generated by high-power pulsed laser radiation propagating in the atmosphere in the breakdown regime are presented. Results of analogous investigations for laser breakdown on a single aerosol particle and ensemble of monodispersed particles versus the particle material and size were published in [1]. In the present work, acoustic spectra of discrete laser sparks in the atmosphere are analyzed, and their special features in comparison with acoustic spectra of individual plasma formations, spectra of acoustic signals generated by pulsed laser radiation propagating in the atmosphere in thermooptical regime, and laboratory spectra of continuous laser sparks are discussed. __________ Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 12, pp. 26–31, December, 2007.  相似文献   

8.
《Current Applied Physics》2020,20(12):1335-1341
In this work, we emphasize the importance of cavity geometry along with nanoparticle shape and plasmonic nanogap (based on a nanoparticle on a metallic film (NPOM) design) which plays significant role in understanding the complex plasmonic mode characteristics involving nanoparticle and gap mode resonances. The cross-section imprint of planar cavity on metallic film plays decisive role in near field enhancement properties at similar NP size and plasmonic nanogap conditions for spherical and cubical NPOM systems. By mimicking the NPOM structure to metal-insulator-metal design, we understand the resonant emission differences for the respective plasmonic modes. Influence of dominant and weaker gap mode resonances resulted in an interesting optical behavior (fluctuations in near field enhancement strength) in NP mode in case of cubical nanostructures. By such extensive investigation and interpretation of sub-wavelength complex plasmonic mode characteristics, various practical applications in plasmonics field can be accomplished.  相似文献   

9.
The particle size distribution, morphology and optical properties of the Au nanoparticle (NP) structures for surface enhanced Raman signal (SERS) application are investigated in dependence on their preparation conditions. The structures are produced from relatively thin Au films (10–20 nm) sputtered on fused silica glass substrate and irradiated with several pulses (6 ns) of laser radiation at 266 nm and at fluencies in the range of 160–412 mJ/cm2. The SEM inspection reveals nearly homogeneously distributed, spherical gold particles. Their initial size distribution of the range of 20–60 nm broadens towards larger particle diameters with prolonged irradiation. This is accompanied by an increase in the uncovered surface of the glass substrate and no particle removal is observed. In the absorption profiles of the nanostructures, the broad peak centred at 546 nm is ascribed to resonant absorption of surface plasmons (SPR). The peak position, halfwidth and intensity depend on the shape, size and size distribution of the nanostructured particles in agreement with literature. From peak intensities of the Raman spectra recorded for Rhodamine 6G in the range of 300–1800 cm−1, the relative signal enhancement by factor between 20 and 603 for individual peaks is estimated. The results confirm that the obtained structures can be applied for SERS measurements and sensing.  相似文献   

10.
The photothermal property of (Ag and Au) plasmonic nanoparticles has brought about many important discoveries and applications in nanoscience and nanotechnology. In this review, we briefly summarize a photothermal effect, the coherent phonon oscillation, of plasmonic nanoparticles irradiated with ultrafast laser pulses of low power density. The coherent phonon oscillation is created in the nanoparticle by the ultrafast impulsive photothermal heating. The effects of size, shape, thickness, and interparticle interaction on the period of coherent phonon oscillations are discussed. The detection of the coherent lattice oscillation of metallic nanoparticles provides a powerful tool to characterize the mechanical and structural properties of nanostructures.  相似文献   

11.
Localized surface plasmonic resonance has attracted extensive attention since it allows for great enhancement of local field intensity on the nanoparticle surface. In this paper, we make a systematic study on the excitation of localized surface plasmons of a graphene coated dielectric particle. Theoretical results show that both the intensity and frequency of the plasmonic resonant peak can be tuned effectively through modifying the graphene layer. Furthermore, high order localized surface plasmons could be excited and tuned selectively by the Laguerre Gaussian beam, which is induced by the optical angular orbital momentum transfer through the mutual interaction between the particle and the helical wavefront.Moreover, the profiles of the multipolar localized surface plasmons are illustrated in detail. The study provides rich potential applications in the plasmonic devices and the wavefront engineering nano-optics.  相似文献   

12.
Crow MJ  Seekell K  Wax A 《Optics letters》2011,36(5):757-759
We propose the use of polarization mapping as a tool to better separate the effects of plasmonic coupling from the local refractive index for molecular imaging and biosensing using gold nanoparticles. Polarization mapping allows identification of the orthogonal excitation mode when the particle dimer orientation is unknown, as may be the case when using plasmonic nanoparticles for cell labeling. This information can be used to sense relative changes in the dielectric environment, or for absolute dielectric sensing with additional a priori interparticle distance information. First, the theoretical scattering by nanoparticle pairs is modeled under parallel and orthogonal polarization orientations and increasing interparticle separation. Second, polarization mapping of substrate bound nanoparticles using dark-field microspectroscopy is investigated as a method to isolate the individual plasmonic coupling modes associated with a pair of nanoparticles without reorientation of the sample. The results of this study provide useful insight toward potential avenues for monitoring distances using plasmonic nanoparticles and sensing the local refractive index using nanoparticle pairs when the pair orientation is not known, as may be the case when using nanoparticles for cell receptor labeling.  相似文献   

13.
The optical properties of semicontinuous silver films have been studied in the mid infrared. The film extinction spectra are shown to be well tailored by the deposition conditions and post-fabrication photomodification with both nanosecond and picosecond laser pulses at 10.6 μm. The photomodification results in a decrease of the extinction above the laser wavelength. We find that the induced changes in the optical responses of the films are both wavelength and polarization selective. This technique allows the creation of long-pass filters for the mid-IR range in accord with the earlier theory.  相似文献   

14.
The laser is a very powerful and very useful instrument in modern nanoscience and nanotechnology. The knowledge of the interaction mechanism of the laser beam with nanoparticles is needed to control the laser processing of different nano‐objects. It was shown that the particle heating–melting–evaporation model can be successfully applied for many phenomena arising when colloidal nanoparticle interact with pulsed laser beams. The general approach of this model is discussed in detail. The two main components of the model, light absorption by particles, and the thermodynamics of phase transitions in particulate material are considered. Special attention is devoted to the correct estimation of the possible heat losses. The way in which the phase diagrams, where the different phase conditions of particle material are presented in laser fluence−particle diameter coordinates, were produced is demonstrated. It is shown how this model can be applied for understanding the mechanism of such complicated processes as particle‐size reduction and submicrometer spherical particle growth, as well as other processes that occur when colloidal particles are irradiated by a pulsed laser.  相似文献   

15.
Graphene plasmons have become promising candidates for deep-subwavelength nanoscale optical devices due to their strong field confinement and low damping. Among these nanoscale optical devices, band-pass filter for wavelength selection and noise filtering are key devices in an integrated optical circuit. However, plasmonic filters are still oversized because large resonant cavities are needed to perform frequency selection. Here, an ultra-compact filter integrated in a graphene plasmonic waveguide was designed, where a rectangular resonant cavity is inside a graphene nanoribbon waveguide. The properties of the filter were studied using the finite-difference time-domain method and demonstrated using the analytical model. The results demonstrate the band-pass filter has a high quality factor(20.36) and electrically tunable frequency response. The working frequency of the filter could also be tuned by modifying the cavity size. Our work provides a feasible structure for a graphene plasmonic nano-filter for future use in integrated optical circuits.  相似文献   

16.
The problem of extreme focusing of an optical beam into the spatial region with wavelength dimensions is considered with the use of the special features of radiation interaction with isolated spherical particles. Results of numerical computations of the optical field intensity at the surface of silver particles of different radii upon exposure to laser radiation with different wavelengths are presented. It is demonstrated that the relative intensity of the plasmon optical field on the nanoparticle surface increases and the field focusing region decreases with increasing particle radius. Results of numerical computations illustrating the influence of the shell of composite nanoparticles comprising a dielectric core and a metal shell on the optical field intensity in the vicinity of the particle are presented. The problem of local optical foci of a transparent microparticle (photonic nanojets) is investigated. It is established that variation of the micron particle size, its optical properties, and laser radiation parameters allows the amplitude and spatial characteristics of the photonic nanojet region to be controlled efficiently.  相似文献   

17.
Owing to exotic optical responses, metallic nanoparticles and nanostructures are finding broad applications in laser science, leading to numerous design variations of plasmonic nanolasers. Nowadays, two of the most intriguing plasmonic nanolasing devices are spasers and random lasers. While a spaser is based on a single metallic nanoparticle resonator with the optical feedback provided by the localized surface plasmon resonance, the operation of a random laser relies on multiple light scattering within randomly distributed metallic nanoparticles. In this paper, an up‐to‐date review on the applications of metallic nanoparticles in spasers and random lasers is provided. Principles of a random spaser, a device combining the features of a spaser and a random laser, are briefly discussed as well. The paper is focused on major theoretical and experimental approaches to control the core metrics of lasing performance, including threshold, resonant wavelength, and emission directionality. The applications of spasers and random lasers in the fields of sensing and imaging are also mentioned. Finally, the challenges and future perspectives in this area of research are discussed.  相似文献   

18.
An increase in the rate of spontaneous recombination of excitons localized in films of InGaN solid solution due to interaction with a plasmon localized in a gold nanoparticle was experimentally observed. The particle is positioned near the surface with the help of a near -field scanning optical microscope or in the result of chemical precipitation from a colloidal solution. Precise positioning of a plasmonic particle allows single excitons with 1—2 meV-wide radiation lines to be revealed and amplified.  相似文献   

19.
We present a simple analytical expression for the full relaxation rate of the excited state of the two-level resonant emitter placed close to a metal nanoparticle with localized plasmon resonance excited by the emitter. We take into account the interaction of the emitter with all multipole polarization modes and the radiation absorption in the nanoparticle. Analytical and numerical estimations of the full relaxation rate are in good agreement. Thus, only two modes are sufficient for describing the electromagnetic interaction of the dipole emitter and the metal nanoparticle, namely, the dipole mode and the mode related to the emitter image under the nanoparticle surface. Such “two-mode” approximation can simplify the analysis of optical properties of nanoplasmonic structures. In particular, the proposed expression for the full relaxation rate is helpful in the modeling of plasmonic nanolasers.  相似文献   

20.
Halloysite nanotube composites covered by silver nanoparticles with the average diameters of 5 nm and 9 nm have been studied by methods of optical spectroscopy of reflectance/transmittance and Raman spectroscopy. It has been established that silver significantly increases the light absorption by nanocomposites in the range of 300 to 700 nm with a maximum near 400 nm, especially for the samples with the nanoparticle size of 9 nm, which is explained by plasmonic effects. The optical absorption increases also in the long-wavelength spectral range, which seems to be due to the localized electronic states in an alumosilicate halloysite matrix after deposition of nanoparticles. Raman spectra of nanocomposites reveal intense scattering peaks at the local phonons, whose intensities are maxima for the samples with the silver nanoparticle sizes of 9 nm, which can be caused by plasmonic enhancement of the light scattering efficiency. The results show the ability to use halloysite nanotube nanocomposites in photonics and biomedicine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号