首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Xiaobing Fan 《中国物理 B》2022,31(5):56101-056101
It is unclear whether there is a liquid-liquid phase transition or not in the bismuth melt at high temperature and high pressure. If so, it will be necessary to confirm the boundary of the liquid-liquid phase transition and clarify whether it is a first-order phase transition. Here, based on x-ray absorption spectra and simulations, the temperature dependence of bismuth structures is investigated under different pressures. According to the similarity of characteristic peaks of x-ray absorption near edge structure (XANES) spectra, we estimate the possible temperature ranges of liquid-liquid phase transition to be 779-799 K at 2.74 GPa and 859-879 K at 2.78 GPa, 809-819 K at 3.38 GPa and 829-839 K at 3.39 GPa and 729-739 K at 4.78 GPa. Using ab initio molecular dynamics (AIMD) simulations, we obtain the stable structures of the bismuth melt at different temperatures and pressures, and calculated their electronic structures. Meanwhile, two stable phases (phase III-like and phase IV-like) of bismuth melts are obtained from different initial phases of bismuth solids (phase III and phase IV) under the same condition (3.20 GPa and 800 K). Assuming that the bismuth melt undergoes a phase transition from IV-like to III-like between 809 K and 819 K at 3.38 GPa, the calculated electronic structures are consistent with the XANES spectra, which provides a possible explanation for the first-order liquid-liquid phase transition.  相似文献   

2.
The structural phase transitions of bismuth under rapid compression has been investigated in a dynamic diamond anvil cell using time-resolved synchrotron x-ray diffraction. As the pressure increases, the transformations from phase I,to phase II, to phase III, and then to phase V have been observed under different compression rates at 300 K. Compared with static compression results, no new phase transition sequence appears under rapid compression at compression rate from 0.20 GPa/s to 183.8 GPa/s. However, during the process across the transition from phase III to phase V, the volume fraction of product phase as a function of pressure can be well fitted by a compression-rate-dependent sigmoidal curve.The resulting parameters indicate that the activation energy related to this phase transition, as well as the onset transition pressure, shows a compression-rate-dependent performance. A strong dependence of over-pressurization on compression rate occurs under rapid compression. A formula for over-pressure has been proposed, which can be used to quantify the over-pressurization.  相似文献   

3.
A study of phase and electrical behaviour in the bismuth niobate, Bi(4)NbO(8.5), using x-ray and neutron powder diffraction, thermogravimetric analysis (TGA), x-ray photoelectron spectroscopy (XPS) and ac impedance spectroscopy is presented. Two polymorphs were identified in this composition, a tetragonal phase (type III), which can appear at temperatures above 800 °C and a pseudo-cubic phase (type II) evident at lower temperatures. The defect structure analysis of the type II phase is consistent with the existence of chains of niobate polyhedra, which facilitate electronic conduction at low temperatures. The appearance of the type III phase is strongly dependent on experimental conditions and TGA and XPS measurements suggest a likely association with change in oxygen stoichiometry.  相似文献   

4.
The high-pressure polymorphs and structural transformation of Sn were experimentally investigated using angledispersive synchrotron x-ray diffraction up to 108.9 GPa. The results show that at least at 12.8 GPa β-Sn→bct structure transformation was completed and no two-phase coexistence was found. By using a long-wavelength x-ray, we resolved the diffraction peaks splitting and discovered the formation of a new distorted orthorhombic structure bco from the bct structure at 31.8 GPa. The variation of the lattice parameters and their ratios with pressure further validate the observation of the bco polymorph. The bcc structure appears at 40.9 GPa and coexists with the bco phase throughout a wide pressure range of40.9 GPa–73.1 GPa. Above 73.1 GPa, only the bcc polymorph is observed. The systematically experimental investigation confirms the phase transition sequence of Sn as β-Sn→bct→bco→ bco + bcc→bcc upon compression to 108.9 GPa at room temperature.  相似文献   

5.
Heterogeneous microscale dynamics in the martensitic phase transition of cobalt is investigated with real-time x-ray scattering. During the transformation of the high-temperature face-centered cubic phase to the low-temperature hexagonal close-packed phase, the structure factor evolution suggests that an initial rapid local transformation is followed by a slower period during which strain relaxes. Coherent x-ray scattering measurements performed during the latter part of the transformation show that the kinetics is dominated by discontinuous sudden changes-avalanches. The spatial size of observed avalanches varies widely, from 100 nm to 10 μm, the size of the x-ray beam. An empirical avalanche amplitude quantifies this behavior, exhibiting a power-law distribution. The avalanche rate decreases with inverse time since the onset of the transformation.  相似文献   

6.
We have studied the high-pressure iron bcc to hcp phase transition by simultaneous x-ray magnetic circular dichroism and x-ray absorption spectroscopy with an x-ray energy dispersive spectrometer. The combination of the two techniques allows us to obtain simultaneously information on both the structure and the magnetic state of iron under pressure. The magnetic and structural transitions simultaneously observed are sharp. Both are of first order in agreement with the theoretical prediction. The pressure domain of the transition observed (2.4+/-0.2 GPa) is narrower than that usually cited in the literature (8 GPa). Our data indicate that the magnetic transition slightly precedes the structural one, suggesting that the origin of the instability of the bcc phase in iron with increasing pressure is to be attributed to the effect of pressure on magnetism as predicted by spin-polarized full-potential total energy calculations.  相似文献   

7.
Comprehensive x-ray powder diffraction studies were carried out in magnetite in the 80-150 K and 0-12 GPa ranges with a membrane-driven diamond anvil cell and helium as a pressure medium. Careful data analyses have shown that a reversible, cubic to a distorted-cubic, structural transition takes place with increasing pressure, within the (P,T) regime below the Verwey temperature TV(P). The experimental documentation that TV(P)=Tdist(P) implies that the pressure-temperature-driven metal-insulator Verwey transition is caused by a gap opening in the electronic band structure due to the crystal-structural transformation to a lower-symmetry phase. The distorted-cubic insulating phase comprises a relatively small pressure-temperature range of the stability field of the cubic metallic phase that extends to 25 GPa.  相似文献   

8.
Three ordered overlayer structures are observed after evaporation for different times onto the (111) substrate. They are interpreted as monolayers with different densities: I, adsorption in sites of high coordination; II, a dense pseudo-square arrangement of bismuth atoms; III, a compact hexagonal arrangement. Structure III is only observed at high coverage and above 245°C. A reversible transformation occurs between II and III for a limited range of coverage. When they exist alone both structures II and III show melting type transitions. A schematic surface phase diagram is established.  相似文献   

9.
The high-pressure structural phase transition, electronic, superconducting and elastic properties of group III nitrides (ScN, YN and LaN) are investigated by first principles calculation with the density functional theory. The calculated lattice parameters are in good agreement with the experimental and other theoretical values. Electronic structure reveals that these materials are semiconductors with an indirect band gap of 1.4, 0.87 and 0.65?eV for ScN, YN and LaN, respectively. The obtained cubic NaCl structure is energetically the most stable structure at ambient pressure. A pressure-induced structural phase transition from NaCl to CsCl structure is predicted. The structural phase transition of ScN, YN and LaN occurs at a pressure of 158, 132 and 26.5?GPa, respectively. On further increase in the pressure, semiconductor-to-metallic transition and superconductivity is observed in these nitrides. The estimated T c values as a function of pressure for ScN, YN and LaN are 31.79, 15.50 and 12.84?K, respectively.  相似文献   

10.
Abstract

Raman scattering, visible absorption, and optical observation studies have been made on polycrystalline potassium superoxide (KO2) in a diamond anvil cell as a function of pressure and temperature. Three new phases are observed. With increasing pressure at 298 K, KO2 transforms from the well known modified CaC2 structure (Phase II), to two new phases (VII, and VIII). The transformation from III to VII occurs at about 3.2GPa. Phase VII transforms to phase VIII at about 4.4GPa. However, in some samples phase VII does not occur and phase II transforms directly into phase VIII at about 4.2 GPa. These structural transformations are indicated by marked changes in the Raman spectrum. The transitions out of phase II are also marked by a discontinuous red shift in the optical absorption edge. From optical observations we have also determined the pressure and temperature dependence of the transitions from phase II to the high temperature cubic (B1) phase I as well as from the high pressure phases VII and VIII to a new nonbirefringent phase IX. This new phase IX has the cubic B2 (CsCl) structure as is shown by our recent X-ray synchrotron experiments.  相似文献   

11.
The in situ high-pressure behavior of the semiconductor antimony trioxide(Sb_2O_s) is investigated by the Raman spectroscopy techniques and angle-dispersive synchrotron x-ray powder diffraction in a diamond anvil cell up to31.5 and 30.7 GPa,respectively.New peaks observed in the external lattice mode range in the Raman spectra at 13.5 GPa suggest that the structural phase transition occurs.The group mode(140 cm~(-1)) in Sb_2O_3 exhibits anomalous pressure dependence;that is,the frequency decreases gradually with the increasing pressure.High pressure synchrotron x-ray diffraction measurements at room temperature reveal that the transition from the orthorhombic structure to high-pressure new phase occurs at about 14.2 GPa,corresponding to the softening of the group optic mode(140 cm~(-1)).  相似文献   

12.
The work functions of the(110) and(100) surfaces of LaB_6 are determined from ambient pressure to 39.1 GPa.The work function of the(110) surface slowly decreases but that of the(100) surface remains at a relatively constant value. To determine the reason for this difference, the electron density distribution(EDD) is determined from high-pressure single-crystal x-ray diffraction data by the maximum entropy method. The EDD results show that the chemical bond properties in LaB_6 play a key role. The structural stability of LaB6 under high pressure is also investigated by single-crystal x-ray diffraction. In this study, no structural or electronic phase transition is observed from ambient pressure to 39.1 GPa.  相似文献   

13.
Using the crystal structure prediction method based on particle swarm optimization algorithm, three phases(P nnm, C2/m and Pm-3 m) for InS are predicted. The new phase Pm-3m of InS under high pressure is firstly reported in the work. The structural features and electronic structure under high pressure of InS are fully investigated. We predicted the stable ground-state structure of InS was the P nnm phase and phase transformation of InS from P nnm phase to P m-3 m phase is firstly found at the pressure of about 29.5 GPa. According to the calculated enthalpies of InS with four structures in the pressure range from 20 GPa to 45 GPa, we find the C2/m phase is a metastable phase. The calculated band gap value of about 2.08 eV for InS with P nnm structure at 0 GPa agrees well with the experimental value. Moreover, the electronic structure suggests that the C2/m and P m-3m phase are metallic phases.  相似文献   

14.
Crystallographic calculations have been carried out for a triple hexagonal close-packed (thcp) structure using data for Pr III, a high-pressure form shown by praseodymium metal. McMahan and Young proposed thcp as an additional high-pressure phase in the rare earth metals structural sequence. As applied to Pr III data at 14.4 GPa pressure, this structure type accounts for most but not all of the diffraction lines. Thus, we are unable to establish conclusively that Pr III has a thcp structure. However, it is shown that the thcp structure fits the Pr III data as reasonably as other structural forms proposed by other authors.  相似文献   

15.
 以化学水解法合成的β-FeOOH纳米微粉(平均粒径在12 nm左右)为原料,分别在0.0~4.5 GPa和200~350 ℃的压力和温度范围进行冷压和热压处理。实验结果表明,冷压对β-FeOOH纳米固体的结构没有明显影响,但却使它的热致相变(从β-FeOOH相到α-Fe2O3相)温度从常压下的203.8 ℃提高到4.5 GPa压力下的274 ℃,接近常规体相材料的相变温度。而在一定的热压条件处理下,首次发现了从β-FeOOH相到α-FeOOH相的结构转变,并在4.5 GPa、200 ℃的热压条件下得到了转变过程中的一个新的亚稳相。从压力和温度对纳米微粒的作用角度,对上述实验结果进行了讨论。  相似文献   

16.
 利用基于密度泛函的第一性原理,计算了高压下TiN的结构转变、弹性和热力学性质。计算结果表明:在压力作用下,TiN经历了从NaCl型结构到CsCl型结构的转变,转变压力为348 GPa;TiN的弹性系数随着压力的增加呈线性增加规律。此外,还给出了德拜温度和热容量这两个重要热力学量与温度和(或)压力的依赖关系。  相似文献   

17.
Pressure-induced structural transformations in spherical and faceted gallium arsenide nanocrystals of various shapes and sizes are investigated with a parallel molecular-dynamics approach. The results show that the pressure for zinc blende to rocksalt structural transformation depends on the nanocrystal size, and all nanocrystals undergo nonuniform deformation during the transformation. Spherical nanocrystals above a critical diameter >/=44 A transform with grain boundaries. Faceted nanocrystals of comparable size have grain boundaries in 60% of the cases, whereas the other 40% are free of grain boundaries. The structure of transformed nanocrystals shows that domain orientation and strain relative to the initial zinc blende lattice are not equivalent. These observations may have implications in interpreting the experimental x-ray line shapes from transformed nanocrystals.  相似文献   

18.
卢志鹏  祝文军  卢铁城  孟川民  徐亮  李绪海 《物理学报》2013,62(17):176402-176402
采用基于密度泛函理论的第一性原理和准简谐晶格动力学方法对Ru的六角密排 (hcp)、面心立方 (fcc)、体心四方 (bct) 和体心立方 (bcc) 结构的磁性、晶格结构稳定性和高温高压下的相变进行了系统的研究. 计算获得了各相结构的磁性基态及其稳定性范围, 结果表明: 零温下在计算的压力范围内, NM-hcp 结构是Ru最稳定的结构, 压力的单独作用下并没有相变的发生; NM-fcc结构是Ru的亚稳定结构, 而NM-bcc和FM-bct结构在动力学上并不稳定. 高温高压下Ru将发生从NM-hcp到NM-fcc结构的相变, 并给出了Ru的温度压力相图. 关键词: 相变 晶格稳定性 磁性 第一性原理  相似文献   

19.
The phase formation in the Ba-Bi-O system is significantly affected by oxygen pressure during its synthesis. The reason for the sensitivity of this system to oxygen pressure consists in mobile coexistence of bismuth ions in different oxidation states in the same oxide (Bi5+ and Bi3+, Bi3+ and Bi2+, etc.). This circumstance determines the oxide structure type and the ability to formation of structural subtypes, i.e., oxides of an isostructural homologous series. The presence of bismuth ions in different oxidation states in the same oxide determines the variety of properties of both bismuth oxides and complex oxides on their basis (ferroelectric, semiconducting, superconducting, and other properties).  相似文献   

20.
Abstract

PbSe/SnSe superlattice, phase transition, high pressure, SR x-ray diffraction)

Synchrotron x-ray diffraction experiments have revealed successive phase transitions in epitaxially-grown PbSe/SnSe superlattices. The transition pressures from the low-pressre cubic B1- to the high-pressure orthorhombic B16-type structures are observed to vary systematically depending upon thickness of the PbSe layer. For example, a [PbSe(36A)/SnSe(12A)]19, with the B1 structure in both layers stabilized in its asgrown state, undergoes the [B1/B1]-to-[B1/B16] and [B1/B16]-to-[B16/B16] structural transitions at 1.9 and 3.8GPa, respectively. This result is in contrast to their bulk data that the B1-to-B16 transition takes place at 5.3GPa in PbSe while the B16 phase is stable in SnSe at atmospheric pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号