首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A. Jabar 《Phase Transitions》2017,90(11):1112-1120
In this paper, the magnetic properties of ternary mixed spins (σ,S,q) Ising model on a dendrimer nanostructure are studied using Monte Carlo simulations. The ground state phase diagrams of dendrimer nanostructure with ternary mixed spins σ = 1/2, S = 1 and q = 3/2 Ising model are found. The variation of the thermal total and partial magnetizations with the different exchange interactions, the external magnetic fields and the crystal fields have been also studied. The reduced critical temperatures have been deduced. The magnetic hysteresis cycles have been discussed. In particular, the corresponding magnetic coercive filed values have been deduced. The multiples hysteresis cycles are found. The dendrimer nanostructure has several applications in the medicine.  相似文献   

2.
In this work, we use Monte Carlo simulations to study the magnetic properties of a nanowire system based on a honeycomb lattice, in the absence as well as in the presence of both an external magnetic field and crystal field. The system is formed with NL layers having spins that can take the values σ = ±1/2 and S = ±1, 0. The blocking temperature is deduced, for each spin configuration, depending on the crystal field Δ. The effect of the exchange interaction coupling Jp between the spin configurations σ and S is studied for different values of temperature at fixed crystal field. The established ground-state phase diagram, in the plane (Jp ,Δ), shows that the only stable configurations are: (1/2, 0), (1/2, +1), and (1/2,-1). The thermal magnetization and susceptibility are investigated for the two spin configurations, in the absence as well as in the presence of a crystal field. Finally, we establish the hysteresis cycle for different temperature values, showing that there is almost no remaining magnetization in the absence of the external magnetic field, and that the studied system exhibits a super-paramagnetic behavior.  相似文献   

3.
In this article, we employ the classical Monte Carlo approach to study the magnetic properties of graphene system. We analyze the ground-state phase diagrams in the presence of external magnetic and crystal fields under effect of the exchange interactions. The critical temperature is deduced. It is proven that the model exhibits the second-order phase transitions at the transition temperature. The total magnetization with the exchange interactions has studied under the temperatures effect. The total magnetization with the crystal field has been established under effect of exchange interactions and temperatures effect. The magnetic hysteresis cycles of graphene system is deduced under effect of temperatures and crystal field. The observations are in good agreement with related experiments and the other theoretical results. It is proven that the graphene system exhibits the superparamagnetic at the transition temperature and a specific value of reduced crystal field.  相似文献   

4.
In this paper we use the Monte Carlo simulations to investigate the magnetic properties of an Ising ferromagnetic–antiferromagnetic model. The system is based on a nano-graphene structure-like bilayer with two bloc sizes: N=24 and 42 spins. For each size N, the upper layer A is formed with spin −3/2, whereas the lower layer B is composed of spin −5/2. We only consider the first nearest-neighbor interactions between the sites i and j. The magnetic properties are studied, in the absence as well as in the presence of a crystal magnetic field, and an external magnetic field. The increasing temperature and crystal field as well as the inter-layer coupling constant, are also studied for this system sizes N=24 and 42 spins. The zero-field-cooled and the field cooled magnetization behaviors are investigated for different values of external magnetic field and a fixed value of exchange interaction between the two blocs. The magnetizations as well as the magnetic susceptibilities versus the temperature are used in order to obtain blocking temperature.  相似文献   

5.
Extensive Monte Carlo simulations have been performed to analyze the dynamical behavior of the three-dimensional Ising model with local dynamics. We have studied the equilibrium correlation functions and the power spectral densities of odd and even observables. The exponential relaxation times have been calculated in the asymptotic one-exponential time region. We find that the critical exponentz=2.09 ±0.02 characterizes the algebraic divergence with lattice size for all observables. The influence of scaling corrections has been analyzed. We have determined integrated relaxation times as well. Their dynamical exponentz int agrees withz for correlations of the magnetization and its absolute value, but it is different for energy correlations. We have applied a scaling method to analyze the behavior of the correlation functions. This method verifies excellent scaling behavior and yields a dynamical exponentz scal which perfectly agrees withz.  相似文献   

6.
P.M. Centres 《Physica A》2010,389(21):4688-4695
A simple model for amorphous solids, consisting of a mixed bond triangular lattice with a fraction of attenuated bonds randomly distributed (which simulate the presence of defects in the surface), is studied here by using computational simulation. The degree of disorder of the surface is tunable by selecting the values of (1) the fraction of regular [attenuated] bonds ρ [1−ρ] (0≤ρ≤1) and (2) the factor r, which is defined as the ratio between the value of the conductivity associated to an attenuated bond and that corresponding to a regular bond (0≤r≤1). The results obtained show how the percolation properties of the disordered system are modified with respect to the standard random bond percolation problem (r=0).  相似文献   

7.
A Monte Carlo (MC) simulation was used to observe the magnetic behavior of a superlattice Ising Model, in the presence of both an external and crystal magnetic fields. The system is made up to layers σ=±1/2σ=±1/2 and S=±1,0S=±1,0. The effect of the exchange interaction coupling JpJp between the spin configurations σσ and SS is investigated for different values of temperature at fixed values of the crystal field. We found that this parameter increases the magnetization of the system at high temperature. Also, the critical temperature is calculated, for each spin configuration as function of temperature using the MC technique. The thermal behavior magnetizations and susceptibilities are studied. Finally, the response of the magnetization to the field shows a hysteresis behavior.  相似文献   

8.
9.
We have performed a Monte Carlo study of the classical XY-model on two-dimensional Sierpinski gaskets (SGs) of several cluster sizes. From the dependence of the helicity modulus on the cluster size we conclude that there is no phase transition in this system at a finite temperature. This is in agreement with previous findings for the harmonic approximation to the XY-model on SG and is analogous to the absence of finite-temperature phase transition for the Ising model on fractals with a finite order of ramification.  相似文献   

10.
In the last few years there has been significant interest in the field of thin films, due to numerous specific phenomena related to the low dimension of these systems, and to the large opportunities in development of high technologies based on their specific magnetic and electronic properties. When dealing with systems of reduced dimensionality it is important to take into account the influence of magnetic anisotropies. In this paper we investigate the magnetic properties of bilayer thin film. This behavior is modeled using Monte Carlo simulations, in the Extended Anisotropic Heisenberg Model. The magnetization, out-of-plane and in-plane magnetic susceptibilities, and also the specific heat bearings according to temperature are investigated in order to find the potential magnetic ordering phases and the critical temperatures, for two sets parameter assignments. For quasi-uniform anisotropy parameters of the film we detect the ferromagnetism-paramagnetism transition and then, by changing the model parameters values, we relieve a short range ferromagnetic ordering phase arising from the antiferromagnetic base layer coupling influence and from easy-plane anisotropy discontinuity on the layers interface.   相似文献   

11.
We have used the Monte Carlo simulation to study the phase diagrams and the magnetic properties of a single nano-graphene layer with next-nearest neighbors coupling J2 and four-spin interaction J4. Interesting behaviors have been found. In particular, the nanographene can present tricritical and triple points for appropriate system parameters.  相似文献   

12.
In this paper we introduce a new Monte Carlo procedure based on the Markov property. This procedure is particularly well suited to massively parallel computation. We illustrate the method on the critical phenomena of the well known one-dimensional Ising model. In the course of this work we found that the autocorrelation time for the Metropolis Monte Carlo algorithm is closely given by the square of the correlation length. We find speedup factors of the order of 1 million for the method as implemented on the CM2 relative to a serial machine. Our procedure gives error estimates which are quite consistent with the observed deviations from the analytically known exact results.  相似文献   

13.
The main purpose of this study was to validate and compare Mean Glandular Dose (MGD) values obtained using Monte Carlo simulations with experimental values obtained from Entrance Surface Dose (ESD) and depth dose measurements performed in a Hospital mammography unit. ESD and depth dose were measured using ThermoLuminescent Dosimeters (TLDs), and a tissue equivalent mammography phantom recommended by the American College of Radiology (ACR). Measurements and Monte Carlo simulations were also compared with the MGD calculated using the Automatic Exposure Control (AEC) system of the mammographic unit. In the simulations the Doppler energy broadening effect was also taken into account. The simulated ESD are about 5%–10% higher than the measured ESD values. The deviation between the measured and simulated MGD values in the phantom is of about 15%. The MGD evaluated using the AEC system is smaller both with respect to the Monte Carlo simulation and experimental result by a factor of about 15% and 25% respectively. Moreover the BackScatter Factor (BSF) estimated by Monte Carlo simulations was used for the MGD calculation according to the Wu’s method. Finally the inclusion of the energy broadening effect on MGD calculation produces negligible variations on the simulated results.  相似文献   

14.
15.
The oscillatory CO oxidation reaction on the restructuring surface of Pt(1 0 0) is studied through a mesoscopic kinetic Monte Carlo (KMC) approach. The present model is an extension of the standard ZGB model with specific attention to the emergence of oscillations in surface reactions. A square and a purely hexagonal lattice are used as substrates on which the CO oxidation reaction steps take place. The dynamics of the reaction on the two substrates exhibit the ZGB kinetic phase transitions, at different kinetic parameter values for each substrate. Surface reconstruction is modelled through switching between the two lattice types. Oscillations are produced in those parametric areas where the steady state concentrations on the two substrates are considerably different. The parametric area where notable oscillations are observed is narrow, but is greatly enhanced when different sticking coefficients of oxygen are taken into account. CO diffusion introduced microscopically to the model on the hexagonal lattice shifts the kinetic transition points and increases considerably the time needed to reach the steady state.  相似文献   

16.
We study the kinematics of multigrid Monte Carlo algorithms by means of acceptance rates for nonlocal Metropolis update proposals. An approximation formula for acceptance rates is derived. We present a comparison of different coarse-to-fine interpolation schemes in free field theory, where the formula is exact. The predictions of the approximation formula for several interacting models are well confirmed by Monte Carlo simulations. The following rule is found: For a critical model with fundamental Hamiltonianþ(), the absence of critical slowing down can only be expected if the expansion of þ( +) in terms of the shift contains no relevant (mass) term. We also introduce a multigrid update procedure for non-abelian lattice gauge theory and study the acceptance rates for gauge groupSU(2) in four dimensions.  相似文献   

17.
In this work we investigate the ground state and the dissipative quantum dynamics of interacting charged particles in an external potential at finite temperature. The recently devised time-dependent quantum Monte Carlo (TDQMC) method allows a self-consistent treatment of the system of particles together with bath oscillators first for imaginary-time propagation of Schrödinger type of equations where both the system and the bath converge to their finite temperature ground state, and next for real time calculation where the dissipative dynamics is demonstrated. In that context the application of TDQMC appears as promising alternative to the path-integral related techniques where the real time propagation can be a challenge.  相似文献   

18.
Chandra N. Patra 《Molecular physics》2013,111(17-18):2419-2422
The canonical ensemble Monte Carlo method is applied to study the structure of polymer solutions confined between surfaces. The polymer molecules are modeled as fused-sphere freely rotating chains with fixed bond length and bond angles and the solvent as hard spheres. The simulation results for the configurational and conformational properties of the chains are presented with varying interfacial distances, chain concentrations, and chain lengths. The chains are depleted at the wall at lower density, which, however, becomes less at higher density. With an increase in the interfacial distance, the enhancement/depletion of the chains at the wall becomes more marked. At all interfacial distances and chain lengths, increasing the concentration of the solvent makes the oscillation in the density profile of the chains more pronounced. Conformational properties provide important indications regarding the behaviour of chains as they approach surfaces.  相似文献   

19.
20.
From its inception in the 1950s to the modern frontiers of applied statistics, Markov chain Monte Carlo has been one of the most ubiquitous and successful methods in statistical computing. The development of the method in that time has been fueled by not only increasingly difficult problems but also novel techniques adopted from physics. Here, the history of Markov chain Monte Carlo is reviewed from its inception with the Metropolis method to the contemporary state‐of‐the‐art in Hamiltonian Monte Carlo, focusing on the evolving interplay between the statistical and physical perspectives of the method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号