首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In an attempt to correlate the crystallographic disorder of γ-MnO2 compounds to their cationic uptake, the influence of their structural defects on their lithium and proton insertion behavior has been studied and compared. The rate of structural defects in the starting γ-MnO2 compounds strongly modifies both the voltage vs. cation composition profiles (in terms of shape, average voltage of each electrochemical process, polarization and cycled capacity) and the cycling behavior during the first cycles. This work illustrates that the relationships between structure and cation insertion behavior are different for Li and for proton. The study allows to select for better performing samples in terms of maximum cycled capacity: Li insertion is favored by a very small amount of initial disorder (i.e. a low rate of structural defects in starting compound), while proton insertion requires maximum initial disorder (i.e. an intermediate rate of structural defects). Extrapolation of the results demonstrates the interest of Ramsdellite γ-MnO2 compounds for cathode applications of rechargeable Li batteries.  相似文献   

2.
Despite the large number of studies on the electrochemical behavior of LiV3O8 as a cathode material in nonaqueous lithium ion batteries, little information is available about the electrochemical behavior of LiV3O8 as an anode material in aqueous rechargeable lithium batteries. In this work, nanostructured LiV3O8 is successfully prepared using a low-temperature solid-state method. The electrochemical properties of the LiV3O8 electrode in 1 M, 5 M, and saturated LiNO3 aqueous electrolytes have been characterized by cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charge/discharge experiments. The results show that LiV3O8 electrode in saturated LiNO3 electrolyte exhibits good electrochemical performance in terms of specific capacity and electrochemical cycling performance. LiV3O8 electrode can be reversibly cycled in saturated LiNO3 aqueous electrolyte for 300 cycles at a rate of 0.5 C (300 mA g−1 is assumed to be 1 C rate) with impressive specific capacities.  相似文献   

3.
Rechargeable Li‐O2 batteries are promising candidates for electric vehicles due to their high energy density. However, the current development of Li‐O2 batteries demands highly efficient air cathode catalysts for high capacity, good rate capability, and long cycle life. In this work, a hydrothermal‐calcination method is presented to prepare a composite of Co3O4 hollow nanoparticles and Co organic complexes highly dispersed on N‐doped graphene (Co–NG), which acts as a bifunctional air cathode catalyst to optimize the electrochemical performances of Li‐O2 batteries. Co–NG exhibits an outstanding initial discharge capacity up to 19 133 mAh g?1 at a current density of 200 mA g?1. In addition, the batteries could sustain 71 cycles at a cutoff capacity of 1000 mAh g?1 with low overpotentials at the current density of 200 mA g?1. Co–NG composites are attractive as air cathode catalysts for rechargeable Li‐O2 batteries.  相似文献   

4.
Yuan Dong  Tianjie Ding  Li-Zhen Fan 《Ionics》2017,23(12):3339-3345
All-solid-state lithium batteries using flexible solid electrolytes instead of combustible organic liquid electrolytes are the ultimate solution to address the safety problem of commercialized lithium ion batteries. In this study, a free-standing and thermostable polymer/plastic crystal composite electrolyte (PPCE) based on polymerized trimethylolpropane trimethacrylate (TMPTMA)-1, 6-hexanediol diacrylate (HDDA) matrix, and plastic crystal electrolyte was prepared for all-solid-state lithium batteries. The polymerized TMPTMA-HDDA-based matrix of a porous network structure coupled with plastic crystal electrolyte (PCE) in the pores reveals good compatibility. The as-synthesized PPCE possesses excellent flexible performance, thermostability, and high conductivity, showing that PPCE can reach 8.53 × 10?4 S cm?1 with 7.5 wt% monomers (PPCE-7.5%) at 25 °C under a stability electrochemical window above 5.2 V. The assembled lithium batteries Li|PPCE|LiFePO4 exhibit high capacity and highly cycling stability at room temperature, indicating great potential of all-solid-state lithium batteries.  相似文献   

5.
Spinel LiMn2O4 suffers from severe dissolution when used as a cathode material in rechargeable Li-ion batteries. To enhance the cycling stability of LiMn2O4, we use the atomic layer deposition (ALD) method to deposit ultrathin and highly conformal Al2O3 coatings (as thin as 0.6–1.2 nm) onto LiMn2O4 cathodes with precise thickness control at atomic scale. Both bare and ALD-coated cathodes are cycled at a specific current of 300 mA g?1 (2.5 C) in a potential range of 3.4–4.5 V (vs. Li/Li+). All ALD-coated cathodes exhibit significantly improved cycleability compared to bare cathodes. Particularly, the cathode coated with six Al2O3 ALD layers (0.9 nm thick) shows the best cycling performance, delivering an initial capacity of 101.5 mA h?g?1 and a final capacity of 96.5 mA h?g?1 after 100 cycles, while bare cathode delivers an initial capacity of 100.6 mA h?g?1 and a final capacity of only 78.6 mA h?g?1. Such enhanced electrochemical performances of ALD-coated cathodes are ascribed to the high-quality ALD oxide coatings that are highly conformal, dense, and complete, and thus protect active material from severe dissolution into electrolytes. Besides, cycling performances of coated cathodes can be easily optimized by accurately tuning coating thickness via varying ALD growth cycles.  相似文献   

6.
采用溶液浇铸法将N-甲基-N-丙基哌啶二(三氟甲基磺)亚胺(PP13TFSI)、二(三氟甲基磺)亚胺锂与偏氟乙烯-六氟丙烯共聚物(P(VdF-HFP))混合制备离子液体凝胶聚合物电解质(ILGPEs). 通过扫描电子显微镜观察发现,这种离子液体凝胶聚合物电解质由于液体相的均匀分布而具有疏松的结构. 采用电化学阻抗、计时电流法、线性扫描伏安法测试了电解质的离子电导率、锂离子迁移数和电化学窗口. 室温下离子液体凝胶聚合物电解质的离子电导率和锂离子迁移数分别是0.79 mS/cm和0.71,电化学窗口为0~5.1 Vvs. Li+/Li. 电池性能测试表明,这种离子液体凝胶聚合物电解质在Li/LiFePO4电池中是稳定的,放电容量在30、75和150mA/g倍率下分别为135、117和100 mAh/g,电池经100个循环后容量保持在100%而几乎没有衰减.  相似文献   

7.
Lithium-rich layered nickel–manganese oxide (LRL-NMO) as a cathode material for rechargeable lithium-ion batteries was successfully prepared using an oxalic acid co-precipitation method, with polyethylene glycol (PEG1000) as an additive. The effects of the Ni/Mn ratio and of PEG on the phase purity, morphology, and electrochemical performance of LRL-NMO were investigated with X-ray diffraction, scanning electron microscope, electrochemical impedance spectroscopy, and charge/discharge testing. Li[Li0.167Ni0.25Mn0.580]O2 delivered the best electrochemical performance among the various Li[Li1/3?2x/3Ni x Mn2/3?x/3]O2 (0?<?x?<?0.5) materials. Furthermore, the sample to which an appropriate amount of PEG had been added showed much smaller and more uniform particle size, higher discharge capacity and energy density, better cycling stability, and lower resistance. The material prepared by adding 9 wt% PEG exhibited high discharge capacity and stability; after 100 cycles at 2 C, it still delivered a discharge capacity of 125.6 mAh g?1, which was 50 % higher than that of a sample prepared without PEG.  相似文献   

8.
The V_2C compound,belonging to the group of two-dimensional transition metal carbonitrides,or MXenes,has demonstrated a promising electrochemical performance in capacitor applications in acidic electrolytes;however,there is evidence to suggest that V_2C is unstable in an acidic environment.On the other hand,the performance of V_2C in neutral aqueous electrolytes is still moderate,and has not yet been systematically studied.The charge storage mechanism in a V_2C electrode,employed in neutral aqueous electrolytes,is investigated via cyclic voltammetry testing and in situ x-ray diffraction(XRD).Good specific capacitances are achieved,specifically208 F/g in 0.5 M Li_2SO_4,225 F/g in 1 M MgSO_4,120 F/g in 1 M Na_2 SO_4,and 104 F/g in 0.5 M K_2SO_4.Using in situ XRD,we observe that,during the charge and discharge process,the c-lattice parameter shrinks or expands by up to 0.25 A in MgSO_4,and 0.29 A in Li_2SO_4 which demonstrates the intercalation/de-intercalation of cations into the d-V_2C layer.  相似文献   

9.
Wangwang Xu  Ying Wang 《Ionics》2018,24(9):2523-2532
Li-excess layered materials, such as Li[Li0.2Mn0.54Ni0.13Co0.13]O2 (LMNCO) et al. are promising cathode materials that can be used in batteries for hybrid electric vehicles (HEV)/electric vehicles (EV), due to their excellent lithium-storage capability and very high energy density. Dramatic capacity loss during electrochemical cycling seriously hinders their practical implementation. It is found that the LMNCO layered cathode material suffers from structural instability and irreversible layered-to-spinel phase transition during lithiation/delithiation, leading to dramatic loss of capacity and deteriorated electrochemical kinetics. To overcome this challenge, we synthesize spinel-structured LHMNCO TBA nanowires using an electrospinning method followed by facile ion-exchange promoted phase transition. After 100 electrochemical cycles at the specific current 0.5 C, spinel-structured LHMNCO TBA still retains a capacity of about 200 mAh/g, corresponding to a capacity retention ratio of 90.5%, much higher than that of layered LMNCO nanowires, which only maintains a specific capacity of 137 mAh/g with only 48.9% capacity retention.  相似文献   

10.
Nanostructured WO3 thin film has been successfully fabricated by radio-frequency magnetron sputtering method and its electrochemistry with lithium was investigated for the first time. The reversible discharge capacity of WO3/Li cells cycled between 0.01 V and 4.0 V was found above 626 mAh/g during the first 60 cycles at the current density 0.02 mA/cm2. By using X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy and selected-area electron diffraction measurements, the reversible conversion of WO3 into nanosized metal W and Li2O was revealed. The high reversible capacity and good recyclability of WO3 electrode made it become a promising cathode material for future rechargeable lithium batteries.  相似文献   

11.
Among all-solid-state batteries, rechargeable Al-ion batteries have attracted most attention because they involve threeelectron-redox reactions with high theoretic specific capacity. However, the solid Al-ion conductor electrolytes are less studied. Here, the microscopic path of Al~(3+)-ion conduction of NASICON-type(Al_(0.2)Zr_(0.8))_(20/19)Nb(PO_4)_3 oxide is identified by temperature-dependent neutron powder diffraction and aberration-corrected scanning transmission electron microscopy experiments.(Al_(0.2) Zr_(0.8))_(20/19) Nb(PO_4)_3 shows a rhombohedral structure consisting of a framework of(Zr,Nb)O_6 octahedra sharing corners with(PO_4) tetrahedra; the Al occupy trigonal antiprisms exhibiting extremely large displacement factors. This suggests a strong displacement of Al ions along the c axis of the unit cell as they diffuse across the structure by a vacancy mechanism. Negative thermal expansion behavior is also identified along a and b axes, due to folding of the framework as temperature increases.  相似文献   

12.
InSe thin film has been successfully fabricated by pulsed-laser deposition method. Electrochemical behavior of Li/InSe cell has been investigated by Galvanostatic cycling and cyclic voltammetry measurements for the first time. The reversible capacity of InSe electrode of 410 mAh/g with the volumetric capacity of about 3302 mAh/cm3 was achieved at a current density of 0.05 mA/cm2. By using XRD and XPS measurements, both alloying/de-alloying processes and selenidation/reduction processes were revealed during the electrochemical cycling of InSe thin film electrode. InSe was found to be a novel candidate of anode materials for rechargeable lithium batteries.  相似文献   

13.
Allyl cyanide (AC) was investigated as a film-forming additive in propylene carbonate (PC)-based electrolytes for graphite anode in lithium-ion batteries. The film-forming behavior of AC was characterized with cyclic voltammetry, electrochemical impedance spectroscopy, scanning electron microscopy, and Fourier transform infrared spectroscopy. By adding 2 wt% AC in the electrolyte of 1 M LiPF6-PC/DMC (1:1, in vol), the exfoliation of graphite anode was effectively suppressed over cycling. Graphite/Li half-cell showed an initial coulombic efficiency of 75 % and a specific capacity of 300 mAh/g after 48 cycles. A possible reductive polymerization mechanism of AC on the surface of graphite was proposed.  相似文献   

14.
锂离子电池相关材料的Raman光谱学研究   总被引:2,自引:2,他引:0  
锂离子电池是目前综合性能最好的可充电池。本文总结我们实验室用Raman光谱学研究锂离子电池相关材料的一些结果 ,包括聚合物电解质的微结构和离子输运机制 ,低温热解碳负极材料的结构表征和锂离子在其中的嵌入 /脱出机理 ,元素替代引起正极材料LiMn2 O4的结构变化以及在充放电过程中电极 /电解质界面形成的钝化层的性质及其对电池性能的影响  相似文献   

15.
Chemical and electrochemical studies have shown that various titanium oxides can incorporate lithium in different ratios. Other compounds with a spinel-type structure and corresponding to the spinel oxides LiTi2O4 and Li4Ti5O12 have been evaluated in rechargeable lithium cells with promising features. The spinel Li[Li1/3Ti5/3]O4 [1–5] compound is a very appealing electrode material for lithium ion batteries. The lithium insertion-deinsertion process occurs with a minimal variation of the cubic unit cell and this assures high stability which may reflect into long cyclability. In addition, the diffusion coefficient of lithium is of the order of 10−8 cm2s−1 [5] and this suggests fast kinetics which may reflect in high power capabilities. In this work we report a study on the kinetics and the structural properties of the Li[Li1/3Ti5/3]O4 intercalation electrode carried out by: cyclic voltammetry, galvanostatic cycling and in-situ X-ray diffraction. The electrochemical characterization shows that the Li[Li1/3Ti5/3]O4 electrode cycles around 1.56 V vs. Li with a capacity of the order of 130 mAhg−1 which approaches the maximum value of 175 mAhg−1 corresponding to the insertion of 1 equivalent per formula unit. The delivered capacity remains constant for hundred cycles confirming the stability of the host structure upon the repeated Li insertion-deinsertion process. This high structural stability has been confirmed by in situ Energy Dispersion X-ray analysis. Paper presented at the 7th Euroconference on Ionics, Calcatoggio, Corsica, France, Oct. 1–7, 2000.  相似文献   

16.
From first principle calculations, we demonstrate that LiXS_2(X = Ga, In) compounds have potential applications as cathode materials for Li ion batteries. It is shown that Li can be extracted from the LiXS_2 lattice with relatively small volume change and the XS_4 tetrahedron structure framework remains stable upon delithiation. The theoretical capacity and average intercalation potential of the LiGaS_2(LiInS_2) cathode are 190.4(144._2) m Ah/g and 3.50 V(3.53 V). The electronic structures of the LiXS_2 are insulating with band gaps of _2.88 eV and 1.99 eV for X = Ga and In, respectively.However, Li vacancies, which are formed through delithiation, change the electronic structure substantially from insulating to metallic structure, indicating that the electrical conductivities of the LiXS_2 compounds should be good during cycling.Li ion migration energy barriers are also calculated, and the results show that Li ion diffusions in the LiXS_2 compounds can be as good as those in the currently widely used electrode materials.  相似文献   

17.
Thin films of spinel LiMn2O4 have been fabricated using a metallorganic precursor. Crystalline films have been deposited on Au substrates to exhibit as the cathode in rechargeable thin film lithium batteries. The nucleation and growth of spinel LiMn2O4 crystallites were investigated with heat treatment of the deposited thin films. Film capacity density as high as 22 μAh/cm2 was measured for LiMn2O4. The film heat treated at 700 °C were cycled electrochemically up to 30 cycles against Li metal without any degradation of the capacity. There were neither open area nor amorphous layers which prevent the Li+ions transfer at the boundaries in the LiMn2O4 thin film. The microscopic study revealed that (111) planes in the two grains directly bonded at the grain boundary which could proceed the lithium ion intercalation or deintercalation smoothly.  相似文献   

18.
Ni foam and carbon fiber cloth were tested as three-dimensional (3D) current collectors for a sulfur/polypyrrole composite cathode in lithium batteries. The cell with the carbon fiber current collector has exhibited remarkably enhanced electrochemical performance compared with its Ni foam counterpart, delivering a high initial capacity of 1,278 mAh g?1 and maintaining a discharge capacity at 810 mAh g?1 after 40 cycles at 0.06 C. Furthermore, the carbon fiber-based cell demonstrated a better rate capability and delivered a highly reversible discharge capacity of 397 mAh g?1 after 50 cycles at 0.5 C, representing an increase of 194 mAh g?1 compared to the Ni foam counterpart. The electrochemical property investigations along with scanning electron microscope studies have revealed that the carbon fiber current collector possesses a three-dimensional network structure, provides an effective electron conduction path, and minimizes the loss of electrical contact within the deposited cathode material during cycling. These results indicate that the carbon fiber cloth can be used as a promising, effective, and inexpensive current collector for Li/S batteries.  相似文献   

19.
The electrochemical behaviour of polypyrrole films doped with dodecyl benzene sulfonate (PPy/DBS) in LiCl aqueous electrolytes has been investigated in order to find the electrolyte concentration suitable for the operation of PPy/DBS-based soft actuators. For this investigation, PPy/DBS films deposited on gold-coated quartz crystals by electropolymerization and simultaneous cyclic voltammetry and electrochemical quartz crystal microbalance techniques were used. During the first redox cycle, while large water movement is observed along with the counter ions in dilute electrolytes, such water transport in concentrated electrolytes is found to be very low. In dilute electrolytes, water molecules accompany counter ions as solvated molecules and due to osmotic effect. In concentrated electrolytes, water movement is less due to limited availability of free water as well as a smaller osmotic pressure difference. In highly concentrated aqueous electrolytes, the mass of the PPy/DBS film at the end of each redox cycle is found to drift, which can be controlled by changing the concentration of the electrolyte. The PPy/DBS films were also cycled at different scan rates in various alkali halide aqueous electrolytes of concentrations 0.1 and 1 M to determine the effective diffusion coefficients of alkali ions in the films. The effective diffusion coefficients were found to increase with the concentration of the electrolytes and decrease with the increase in size of cations.  相似文献   

20.
固态电解质被认为是解决传统液态锂金属电池安全隐患和循环性能的关键材料,但仍然存在离子电导率低,界面兼容性差等问题.设计兼顾力学性能、离子电导率和电化学窗口的有机-无机复合型固态电解质材料是发展全固态锂电池的明智选择.近年来,基于无机填料与聚合物电解质的有机-无机复合电解质备受关注.设计与优化复合电解质结构对提高复合电解质综合性能具有重要意义.本文详细梳理了有机-无机复合固态电解质在全固态锂电池中展现的多方面优势,从满足不同性能需求的复合电解质结构设计角度出发,综述了有机-无机复合电解质在锂离子传导、锂枝晶的抑制、界面稳定性和相容性等方面的研究进展,并对有机-无机复合电解质的未来发展趋势和方向进行了展望.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号