首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 469 毫秒
1.
The influence of the interface exchange coupling on the magnetization reversal process for a FePt/α-Fe/FePt tri-layer structure has been studied through a micromagnetic approach.The analytical formula of the nucleation field has been derived.It is found that the nucleation field increases as the interface coupling constant rises.Especially when the thickness of the soft layer is small,the influence of the exchange coupling on the nucleation field is significant.The angular distributions of the magnetization for various exchange coupling constants have been obtained by numerical calculation.It is found that the angular distribution of the magnetization is discontinuous at the interface of the hard and soft layers.In the meantime,the pinning field decreases with the increase of the thickness of the soft layer and the exchange coupling constant.  相似文献   

2.
Hysteresis loops,energy products and magnetic moment distributions of perpendicularly oriented Nd2Fe(14)B/α-Fe exchange-spring multilayers are studied systematically based on both three-dimensional(3D)and one-dimensional(1D)micromagnetic methods,focused on the influence of the interface anisotropy.The calculated results are carefully compared with each other.The interface anisotropy effect is very palpable on the nucleation,pinning and coercive fields when the soft layer is very thin.However,as the soft layer thickness increases,the pinning and coercive fields are almost unchanged with the increment of interface anisotropy though the nucleation field still monotonically rises.Negative interface anisotropy decreases the maximum energy products and increases slightly the angles between the magnetization and applied field.The magnetic moment distributions in the thickness direction at various applied fields demonstrate a progress of three-step magnetic reversal,i.e.,nucleation,evolution and irreversible motion of the domain wall.The above results calculated by two models are in good agreement with each other.Moreover,the in-plane magnetic moment orientations based on two models are different.The 3D calculation shows a progress of generation and disappearance of vortex state,however,the magnetization orientations within the film plane calculated by the 1D model are coherent.Simulation results suggest that negative interface anisotropy is necessarily avoided experimentally.  相似文献   

3.
A ferroelectric bilayer model considering depolarization field and interfacial coupling is proposed and the expression of the depolarization field is derived. The spatial profiles of spontaneous polarization and hysteresis loops are calculated using the numerical method with and without considering the depolarization field. The effects of the depolarization field and interfacial coupling on the polarization of second-order ferroelectric bilayers are studied systematically. When interfacial coupling is ferroelectric coupling, the interface spontaneous polarization increases and the area of hysteresis loop becomes larger with increasing coupling. When interfacial coupling is antiferroelectric coupling, the depolarization field makes the central loop become smaller and the shape of the hysteresis loop becomes steep. Meanwhile, as interfacial coupling increases, the outer loops stretch further out horizontally and the size of the central loop widens.  相似文献   

4.
In this work, we experimentally investigated the thermal stability of the interlayer exchange coupling field(H_(ex)) and strength(-J_(iec)) in synthetic antiferromagnetic(SAF) structure of [Pt(0.6)/Co(0.6)]_2/Ru(t_(Ru))/[Co(0.6)/Pt(0.6)]_4 multilayers with perpendicular anisotropy. Depending on the thickness of the spacing ruthenium(Ru) layer, the observed interlayer exchange coupling can be either ferromagnetic or antiferromagnetic. The H_(ex) were studied by measuring the magnetization hysteresis loops in the temperature range from 100 K to 700 K as well as the theoretical calculation of the-J_(iec). It is found that the interlayer coupling in the multilayers is very sensitive to the thickness of Ru and temperature. The H_(ex)exhibits either a linear or a non-linear dependence on the temperature for different thickness of Ru. Furthermore, our SAF multilayers show a high thermal stability even up to 600 K(H_(ex)= 3.19 kOe,-J_(iec)= 1.97 erg/cm~2 for t_(Ru)=0.6 nm, the unit 1 Oe = 79.5775 A·m~(-1)), which was higher than the previous studies.  相似文献   

5.
Hysteresis loops and energy products have been calculated systematically by a three-dimensional(3D) software OOMMF for Sm–Co/α-Fe/Sm–Co trilayers with various thicknesses and β, where β is the angle between the easy axis and the field applied perpendicular to the film plane. It is found that trilayers with a perpendicular anisotropy possess considerably larger coercivities and smaller remanences and energy products compared with those with an in-plane anisotropy.Increase of β leads to a fast decrease of the maximum energy product as well as the drop of both remanence and coercivity. Such a drop is much faster than that in the single-phased hard material, which can explain the significant discrepancy between the experiment and the theoretical energy products. Some modeling techniques have been utilized with spin check procedures performed, which yield results in good agreement with the one-dimensional(1D) analytical and experimental data, justifying our calculations. Further, the calculated nucleation fields according to the 3D calculations are larger than those based on the 1D model, whereas the corresponding coercivity is smaller, leading to more square hysteresis loops and better agreement between experimental data and the theory.  相似文献   

6.
The nanocomposite BaFe12O19/α-Fe and nanocrystalline α-Fe microfibers with diameters of 1–5 μm, high aspect ratios and large specific areas are prepared by the citrate gel transformation and reduction process. The nanocomposite BaFe12O19/α-Fe microfibers show some exchange–coupling interactions largely arising from the magnetization hard(BaFe12O19) and soft(α-Fe) nanoparticles. For the microwave absorptions, the double-layer structures consisting of the nanocomposite BaFe12O19/α-Fe and α-Fe microfibers each exhibit a wide band and strong absorption behavior. When the nanocomposite BaFe12O19/α-Fe microfibers are used as a matching layer of 2.3 mm in thickness and α-Fe microfibers as an absorbing layer of 1.2 mm in thickness, the optimal reflection loss(RL) achieves-47 dB at 15.6 GHz, the absorption bandwidth is about 12.7 GHz ranging from 5.3 to 18 GHz, exceeding-20 dB, which covers 72.5% C-band(4.2–8.2 GHz)and whole X-band(8.2–12.4 GHz) and Ku-band(12.4–18 GHz). The enhanced absorption properties of these double-layer absorbers are mainly ascribed to the improvement in impedance matching ability and microwave multi-reflection largely resulting from the dipolar polarization, interfacial polarization, exchange–coupling interaction, and small size effect.  相似文献   

7.
The equilibrium magnetization configuration, the inducing field and the coercive field in trilayer magnetic materials having an out-of-plane anisotropy defect interlayer between two in-plane anisotropy layers are discussed by both analytical and numerical calculations based on a micromagnet approach. It is shown that the above physical parameters strongly depend on the defect layer such as its thickness and exchange stiffness etc., as well as on the applied fields. It is found that there is a special thickness of defect layer, in which the inducing effect begin to occur, and the critical behavior of inducing field in the vicinity of the special thickness is linearly characterized. Particularly, the magnetic hysteresis shows typical soft hysteresis shape, even though the host material is composed of hard magnets, and the coercivity increases with increasing the thickness of the interlayer.  相似文献   

8.
Exchange-coupled SmTbCo dual-layer media are prepared by an r.f magnetron sputtering system and their magnetic properties are investigated. The prepared SmTbCo dual layer is composed of a 340 emu/cm^3 TM-rich readout layer and a 5.80 kOe RE-rich memory layer, meeting the requirements of high saturation magnetization and large coercivity for hybrid recording. Through exchange coupling, the coercivity of the high-saturation- magnetization SmTbCo layer is greatly enhanced from 1.85 to 5.96 kOe. The calculated interface wall energy for Sm6.65Tb12.35Co81 (20nm)/Sm1.22Tb42.16Co56.62 (20hm) is about 3.85erg/cm62. The reversal magnetization of the SmTbCo exchange-coupling dual-layer films is analysed based on a micro-magnetic model.  相似文献   

9.
何珂 《中国物理》2006,15(2):449-453
The influence of the magnetic field sweep rate on the hysteresis loops of exchange bias Ni0.8Fe0.2/Fe0.5Mn0.5 bilayers has been investigated with a vibrating sample magnetometer. It was found that the sweep rate of 13.6 kA/4πms is high enough to bring about obvious changes in the hysteresis loops of the exchange bias bilayer. High sweep rate in the magnetization reversal stage enlarges the coercivity of the sample, while high sweep rate in the saturation state reduces the coercivity. The above phenomena were attributed to magnetic viscosity in the ferromagnetic layer enhanced by the interface exchange interaction and domain magnetization reversals assisted by thermal fluctuation in the antiferromagnetic layer respectively.  相似文献   

10.
张开成  刘邦贵 《中国物理 B》2009,18(9):3960-3965
We have investigated the exchange bias and training effect in the ferromagnetic/antiferromagnetic (FM/AF) heterostructures using a unified Monte Carlo dynamical approach. The magnetization of the uncompensated AF layer is still open after the first field cycling is finished. Our simulated results show obvious shift of hysteresis loops (exchange bias) and cycling dependence of exchange bias (training effect) when the temperature is below 45~K. The exchange bias field decreases with decreasing cooling rate or increasing temperature and the number of the field cycling. Essentially, these two effects can be explained on the basis of the microscopical coexistence of both reversible and irreversible moment reversals of the AF domains. Our simulations are useful to understand the real magnetization dynamics of such magnetic heterostructures.  相似文献   

11.
Zero-temperature Monte Carlo simulations are used to investigate the hysteresis of a magnetic particle in a dipolar Ising model.The magnetic particle is described in a systemm of permanent dipoles,and the dipoles are located in a cubic lattice site.The effects of the shape and the size of the particle on the hysteresis loop at zero temperature are obtained.For strong exchange interactions,the shapes of magnetic hysteresis loops approach rectangle.For weak exchange interactions,the effects of the size and the shape of the particle on the loops are more remarkable than those of strong exchange interactions case.The slope of the hysteresis loop decreases with the increase of the ratio of the semi major axis to the semi minor axis of the ellipsoidal magnetic particle,and there is an increase of the slope of the hysteresis with the decrease of the size of the magnetic particle.The effects of the shape and size of the particle on the coercive force at zero temperature are also investigated.  相似文献   

12.
《中国物理快报》2005,22(12):3169-3172
The magnetic properties and the structure of [Co/Ti/Gd0.36 Co0.64/Ti]4/Co multilayers are investigated by means of torque magnetometer, vibrating sample magnetometer and transverse magneto-optic Kerr effect (TMOKE) measurements and the atomic force microscopy. Due to interlayer exchange interaction, Co and Gd-Co layers form a macroscopic ferrimagnetic system. The change in the sign of the TMOKE hysteresis loops near the compensation temperature and field induced magnetic phase transitions are found. The latter can be characterized by a critical field which shows a linear variation with the temperature. The magnetic properties of these multilayers from many points of view are similar to those of bulk ferrimagnets.  相似文献   

13.
We investigate spin-valve sandwiches with thin amorphous CoNbZr as soft layers. The magnetoresistance (MR), microstructure, and magnetostatic coupling are studied in these sandwiches with different layer deposition sequences. For the CoNbZr/Cu/Co sandwich, the CoNbZr underlayer provides a smoother surface on which smooth Cu and Co layers can subsequently grow. The Cu spacer is dense and pinholes-free, leading to a good ““spin valve““ effect with a larger MR ratio of 3.8%. For the Co/Cu/CoNbZr sandwich, however, the Cu spacer is rough and pinholes were observed, which could induce a direct ferromagnetic coupling. Correlated rougher surfaces on both the sides of the Cu spacer were also observed, giving rise to an ““orangepeel““ coupling of about O. 105 erg/cm^-2. This strong ferromagnetic coupling in Co/Cu/CoNbZr results in a lower MR ratio of 1.6%. Moreover, upon proper thermal annealing, the CoNbZr/Cu/Co has a larger MR enhancement and a superior thermal stability to 350℃ due to the dense and homogenous structure in the spacer layer.  相似文献   

14.
The mutual control mechanism between magnetization and polarization in multiferroic materials is studied. The system contains a ferromagnetic sublattice and a ferroelectric sublattice. To describe the magneto–electric coupling, we propose a linear coupling Hamiltonian between ferromagnetism and ferroelectricity without microscopic derivation. This coupling enables one to retrieve the hysteresis loops measured experimentally. The thermodynamic properties of the system are calculated, such as the temperature dependences of the magnetization, polarization, internal energy and free energy.The ferromagnetic and ferroelectric hysteresis loops driven by either a magnetic or an electric field are calculated, and the magnetic spin and pseudo-spin are always flipped synchronously under the external magnetic and electric field. Our theoretical results are in agreement with the experiments.  相似文献   

15.
For static magnetic properties of the Co/Ni bilayers, macroscopic hysteresis loops and microscopic magnetic moment distributions have been determined by the object oriented micromagnetic framework(OOMMF). It is found that when the bilayer systems are fully decoupled, the magnetizations of the two phases reverse separately. The coercivity of the bilayers decreases to a valley value sharply with increasing interfacial exchange coupling and then rises slowly to a platform. On the other hand, we have carried out an atomistic simulation for the laser-induced ultrafast demagnetization of the Co/Ni bilayer. A larger damping constant leads to a faster demagnetization as well as a larger degree of demagnetization, which is consistent with the first-principle theoretical results. For the magnetization recovery process, the damping constant has different influences on the recovery time with various peak electron temperatures, which is ignored in previous atomistic simulations as well as the Landau–Liftshit–Bloch(LLB) micromagnetic calculations. Furthermore, as the interfacial exchange coupling increases, the ultrafast demagnetization curves for Co and Ni become coincident, which is a demonstration for the transition from two-phase phenomenon to single-phase phenomenon.  相似文献   

16.
We use ion implantation as a new approach to build an anti-ferromagnetic (AFM) cluster embedded exchange bias (EB) system. Co film with thickness of 130nm is deposited on the Si (111) substrate using magnetron sputtering, 60keV O+ is chosen to implanted into the Co film to form CoO AFM clusters coupling with Co matrix at the interface. By measuring the hysteresis loop after field-cooling, significant shifts of loop along the applied field are confirmed. When increasing the implantation dose to 2×1017/cm2 and annealed samples in N2 atmosphere, we obtain the highest HEB to 458Oe.  相似文献   

17.
The training effect and the hysteresis behaviour of the angular dependence of exchange bias are extensively investigated upon the variation of the IrMn layer thickness tXrMn in a series of Co/IrMn bilayers. When tIrMn is very small, both of them are negligible. Then they increase very sharply with increasing tUMn and then reach maxima at almost the same value OftXrMn. Finally they both decrease when tIrMn is further increased. The similar variation trends suggest that these phenomena arise from irreversible change of antiferromagnet spin orientations, according to the thermal activation model.  相似文献   

18.
In this paper, the magnetization reversal of the ferromagnetic layers in the IrMn/CoFe/AlOx/CoFe magnetic tunnel junction has been investigated using bulk magnetometry. The films exhibit very complex magnetization processes and reversal mechanism. Thermal activation phenomena such as the training effect, the asymmetry of reversal, the loop broadening and the decrease of exchange field while holding the film at negative saturation have been observed on the hysteresis loops of the pinned ferromagnetic layer while not on those of the free ferromagnetic layer. The thermal activation phenomena observed can be explained by the model of two energy barrier distributions with different time constants.  相似文献   

19.
Two-dimensional(2D)magnets provide an ideal platform to explore new physical phenomena in fundamental magnetism and to realize the miniaturization of magnetic devices.The study on its domain structure evolution with thickness is of great significance for better understanding the 2D magnetism.Here,we investigate the magnetization reversal and domain structure evolution in 2D ferromagnet Fe3GeTe2(FGT)with a thickness range of 11.2-112 nm.Three types of domain structures and their corresponding hysteresis loops can be obtained.The magnetic domain varies from a circular domain via a dendritic domain to a labyrinthian domain with increasing FGT thickness,which is accompanied by a transition from squared to slanted hysteresis loops with reduced coercive fields.These features can be ascribed to the total energy changes from exchange interaction-dominated to dipolar interaction-dominated with increasing FGT thickness.Our finding not only enriches the fundamental magnetism,but also paves a way towards spintronics based on 2D magnet.  相似文献   

20.
We present a study of thermal stability of the top spin valve with a structure of seed Ta (Snm)/Co75Fe25 (5 nm ) /Cu (2.5 nm) /Co75Fe25 (5 nm ) /Ir20Mn80(12 nm) /cap Ta (8 nm) deposited at room temperature by magnetron sputtering. A vibrating sample magnetometer fixed with a heater was used to record the magnetic hysteresis loops at variational temperatures and x-ray diffraction was performed to characterize the structure of the multilayer. The exchange field Hex and the coercivity of the pinned CoFe layer Hop decrease monotonically with increasing temperature. The coercivity of the free CoFe layer Hcf in the spin valve shows a maximum at 498K. The temperature dependences of Hex, Hop and Hcf have also been discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号