首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
e design and fabricate an InGaAs/InP double heterostructure bipolar transistor (DHBT). The spike of the conduction band discontinuity between InGaAs base and InP collector is successfully eliminated by insertion of an InGaAs layer and two InGaAsP layers. The current gain cutoff frequency and maximum oscillation frequency are as high as 155 and 144GHz. The breakdown voltage in common-emitter configuration is more than 7V. The high cutoff frequency and high breakdown voltage make high-speed andhigh-power circuits possible  相似文献   

2.
To eliminate the conduction band spike at the base-collector interface, an InP/InGaAs double heterostructure bipolar transistor (DHBT) with an InGaAsP composite collector is designed and fabricated using the conventional mesa structure. The DHBT with emitter area of 1.6×15μm^2 exhibits current-gain cutoff frequency ft = 242 OHz at the high collector current density Jc = 2.1 mA/μm^2, which is to our knowledge the highest ft reported for the mesa InP DHBT in China. The breakdown voltage in common-emitter configuration is more than 5 V. The high-speed InP/InGaAs DHBT with high current density digital circuits. is very suitable for the application in ultra high-speed  相似文献   

3.
Currently, triple‐junction solar cells realized from III–V semiconductor compounds hold the solar energy conversion efficiency world record. To improve the efficiency significantly, it is necessary to increase the number of junctions and to involve a sub‐cell with an absorber layer in the band gap range of 1 eV. For the realization of a stacked four‐junction device with optimised band gaps, we have grown InGaAsP/InGaAs tandem cells lattice matched to InP substrates, and investigated properties of the absorber bulk material. Time‐resolved photoluminescence of the low band gap In0.53Ga0.47As absorber embedded between InP barriers was measured. The InGaAs/GaAsSb tunnel diode structure used in the tandem has been processed into a separate device and IV curves were measured. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
Positron-lifetime experiments have been carried out on two undoped n-type liquid encapsulated Czochralski (LEC)-grown InP samples with different stoichiometric compositions in the temperature range 10-300 K. For temperatures below 120 K for P-rich InP and 100 K for In-rich InP, the positron average lifetime began to increase rapidly and then leveled off, which was associated with the charge state change of hydrogen indium vacancy complexes from (VInH4)+ to (VInH4)0. This phenomenon was more obvious in P-rich samples that have a higher concentration of VInH4. The transformation temperature of approximately 120 K suggests that the complex VInH4 is a donor defect and that the ionization energy is about 0.01 eV. The ionization of neutral VInH4 accounted for the decrease of the positron average lifetime when the sample was illuminated with a photon energy of 1.32 eV at 70 K. These results provide evidence for hydrogen complex defects in undoped LEC InP.  相似文献   

5.
The combined effects of hydrostatic pressure and temperature on donor impurity binding energy in GaAs/Ga0.7Al0.3As double quantum well in the presence of the electric and magnetic fields which are applied along the growth direction have been studied by using a variational technique within the effective-mass approximation. The results show that an increment in temperature results in a decrement in donor impurity binding energy while an increment in the pressure for the same temperature enhances the binding energy and the pressure effects on donor binding energy are lower than those due to the magnetic field.  相似文献   

6.
Crystalline AusSi2/Si heterojunetion nanowires (AusSi2/SiNWs) are obtained by thermal evaporating SiO pow- ders on thick gold-coated silicon substrates in a low vacuum system. Structure analysis of the produced AusSh/Si heterojunetions is performed by employing a transmission electron microscope (TEM) and a selected area electric diffraetometer. The chemical compositions axe studied by a energy-dispersive x-ray spectroscope attached to the TEM. A two-step growth model is proposed to describe the formation of the AusSi2/SiNWs. During the first step, crystalline SiNWs are formed via a growth mechanism combining the oxide-assisted growth process with the vapour-liquid-solid model at relatively high temperature. In the second step, the temperature decreases and one segment of the preformed SiNWs reacts with the remnant Au to form single crystalline AusSi2 nanowires by a solid-liquid-solid process. The present work should be useful for the future synthesis and research of high-quality gold silicide nanowires and microelectronic devices based on the nanowires.  相似文献   

7.
The electronic structures and optical properties of In doped GaN were calculated with different doping concentration, from first-principles using density function theory with the plane-wave ultrasoft pseudopotential method. The influence of In doping on the volume, interactions among atoms, density of states, electron density difference, and optical properties of GaN was analyzed. The results show that the interactions among atoms are reduced, band gap decreases, and absorption spectra have red shift along with the increase of In doping concentration.  相似文献   

8.
运用Silvaco-TCAD软件构建了InP/In_(0.53)Ga_(0.47)As/InP双异质结双极型晶体管模型,研究了掺杂浓度、厚度以及温度对器件特性的影响.结果表明:双异质结双极型晶体管DHBT的开启电压能达到约0.4V,当浓度达到4×10^(19) cm^(-3)的时候,电流增益可以达到一个最佳状态,其峰值能达到约125左右,且浓度对截止频率以及最高振荡频率没有太大的影响;当增大基区厚度时,电流增益会减小,改变厚度能够使DHBT输出特性得以提升,并且提高基区电流的注入;双异质结双极型晶体管具有很好的温度稳定性.  相似文献   

9.
The presence of an extrinsic photoluminescence (PL) band peaked at 1.356 eV at low temperature is observed, on a large number of self-assembled InAs and In0.5Ga0.5As quantum dot (QD) structures, when exciting just below the GaAs absorption edge. A detailed optical characterization allows us to attribute the 1.356 eV PL band to the radiative transition between the conduction band and the doubly ionized Cu Ga acceptor in GaAs. A striking common feature is observed in all investigated samples, namely a resonant quenching of the QD-PL when exciting on the excited level of this deep defect. Moreover, the photoluminescence excitation (PLE) spectrum of the 1.356 eV emission turns out to be almost specular to the QD PLE. This correlation between the PL efficiency of the QDs and the Cu centers evidences a competition in the carrier capture arising from a resonant coupling between the excited level of the defect and the electronic states of the wetting layer on which the QDs nucleate. The estimated Cu concentration is compatible with a contamination during the epitaxial growth. Received 13 November 2001 / Received in final form 28 May 2002 Published online 19 July 2002  相似文献   

10.
Measurements of GaN HFET lifetime as a function of temperature show that different degradation mechanisms are involved at low temperatures (close to room temperature) and high temperatures (above 150 °C). The degradation at low temperatures is linked to the trap generation and can be explained using the current collapse model. At higher tempe‐ ratures, other degradation mechanisms become important or even dominant. The current collapse related degradation can be diminished by using improved device design, which will greatly increase the overall lifetime (up to long lifetimes obtained by extrapolating high temperature data to room temperature). (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
The microindentation studies have been reported for undoped and doped InAs/InP semiconductor alloys grown by metal organic vapor phase epitaxy (MOVPE). It was found that the microhardness value increases with increase of applied load and attains a constant value for further increase in the load. The mechanical properties like, fracture toughness, brittleness index, fracture surface energy and indentation size effect coefficient were determined using the microhardness value. The indented samples were etched in H2SO4:H2O2:H2O of the ratio of (1:1:1) for 30 s. This reveals the dislocation rosette patterns generated around the edges of the indentation on subsequent etching process.  相似文献   

12.
The electronic band structures of wurtzite GaN with Ga and N vacancy defects are investigated by means of the first-principles total energy calculations in the neutral charge state. Our results show that the band structures can be significantly modified by the Ga and N vacancies in the GaN samples. Generally, the width of the valence band is reduced and the band gap is enlarged. The defect-induced bands can be introduced in the band gap of GMV due to the Ga and N vacancies. Moreover, the GaN with high density of N vacancies becomes an indirect gap semiconductor. Three defect bands due to Ga vacancy defects are created within the band gap and near the top of the valence band. In contrast, the N vacancies introduce four defect bands within the band gap. One is in the vicinity of the top of the valence band, and the others are near the bottom of the conduction band. The physical origin of the defect bands and modification of the band structures due to the Ga and N vacancies are analysed in depth.  相似文献   

13.
The strain fields in a wafer-bonded GaAs/GaN structure are measured by electron backscatter diffraction (EBSD). Image quality (IQ) of EBSD Kikuchi patterns and rotation angles of crystal lattices as strain sensitive parameters axe employed to chaxacterize the distortion and the rotation of crystal lattices in the GaAs-interface-GaN structure, as well as to display the strain fields. The results indicate that the influence region of the strains in the wafer-bonded GaAs/GaN structure is mainly located in GaAs side because the strength of GaAs is weaker than that of GaN. The cross-sectional image of transmission electron microscopy (TEM) further reveals the distortion and the rotation of crystal lattices induced by strains systematically.  相似文献   

14.
InAlAs/InGaAs high electron mobility transistors(HEMTs) on an InP substrate with well-balanced cutoff frequency fTand maximum oscillation frequency fmax are reported. An InAlAs/InGaAs HEMT with 100-nm gate length and gate width of 2 × 50 μm shows excellent DC characteristics, including full channel current of 724 mA/mm, extrinsic maximum transconductance gm.max of 1051 mS/mm, and drain–gate breakdown voltage BVDG of 5.92 V. In addition, this device exhibits fT= 249 GHz and fmax = 415 GHz. These results were obtained by fabricating an asymmetrically recessed gate and minimizing the parasitic resistances. The specific Ohmic contact resistance was reduced to 0.031 Ω·mm. Moreover,the fTobtained in this work is the highest ever reported in 100-nm gate length InAlAs/InGaAs InP-based HEMTs. The outstanding gm.max, fT, fmax, and good BVDG make the device suitable for applications in low noise amplifiers, power amplifiers, and high speed circuits.  相似文献   

15.
GaN nanowires and nanorods have been successfully synthesized on Si(1 1 1) substrates by magnetron sputtering through ammoniating Ga2O3/V films at 900 °C in a quartz tube. X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and photoluminescence (PL) spectrum were carried out to characterize the structure, morphology, and photoluminescence properties of GaN sample. The results show that the GaN nanowires and nanorods with pure hexagonal wurtzite structure have good emission properties. The growth direction of nanostructures is perpendicular to the fringes of (1 0 1) plane. The growth mechanism is also briefly discussed.  相似文献   

16.
Co0.2AlxZn0.8−xO films prepared with different molar ratio of aluminum nitrate to zinc acetate were deposited on substrates by the sol-gel technique. X-ray diffraction, photoluminescence and ferromagnetism measurements were used to characterize the Co0.2AlxZn0.8−xO diluted magnetic semiconductors. The authors found that the intensity of the acceptor-related photoluminescence increased with increasing aluminum concentration and an increase in the number of the acceptor-like defects (zinc vacancies especially) in the Co0.2AlxZn0.8−xO film might lead to the enhancement of the magnetic properties. This implies that controls of the aluminum concentration and the number of the acceptor-like defects are important factors to produce strong ferromagnetism Co0.2AlxZn0.8−xO films prepared by the sol-gel method.  相似文献   

17.
In this investigation, an operating voltage as low as 5 V has been achieved for Oxide TFT with Y2O3 as a gate oxide and a-IGZO as an active layer. The OTFT has been fabricated at room temperature using RF sputter. The mobility and threshold voltages are 11.3 cm2/V s and 3.4 V for the device with W/L = 0.8, respectively. The annealing at 400 °C in N2 containing 5% H2 ambient has been utilized to improve the electrical performance of TFT. The on-off current which is determined by gate dielectric has been observed to be 104. It has also been observed that the dielectric properties of gate oxide deteriorate on annealing. The dielectric constant of Y2O3 is observed in the range between 5.1 and 5.4 measured on various devices.  相似文献   

18.
InAs quantum dots (QDs) were grown on InP substrates by metalorganic chemical vapor deposition. The width and height of the dots were 50 and 5.8 nm, respectively on the average and an areal density of 3.0×1010 cm−2 was observed by atomic force microscopy before the capping process. The influences of GaAs, In0.53Ga0.47As, and InP capping layers (5–10 ML thickness) on the InAs/InP QDs were studied. Insertion of a thin GaAs capping layer on the QDs led to a blue shift of up to 146 meV of the photoluminescence (PL) peak and an InGaAs capping layer on the QDs led to a red shift of 64 meV relative to the case when a conventional InP capping layer was used. We were able to tune the emission wavelength of the InAs QDs from 1.43 to 1.89 μm by using the GaAs and InGaAs capping layers. In addition, the full-width at half-maximum of the PL peak decreased from 79 to 26 meV by inserting a 7.5 ML GaAs layer. It is believed that this technique is useful in tailoring the optical properties of the InAs QDs at mid-infrared regime.  相似文献   

19.
In pursuit of low-cost and highly efficient thin film solar cells, Cu(In,Ga)(Se,S)2/CdS/i-ZnO/ZnO:Al (CIGSS) solar cells were fabricated using a two-step process. The thickness of i-ZnO layer was varied from 0 to 454 nm. The current density-voltage (J-V) characteristics of the devices were measured, and the device and performance parameters of the solar cells were obtained from the J-V curves to analyze the effect of varying i-ZnO layer thickness. The device parameters were determined using a parameter extraction method that utilized particle swarm optimization. The method is a curve-fitting routine that employed the two-diode model. The J-V curves of the solar cells were fitted with the model and the parameters were determined. Results show that as the thickness of i-ZnO was increased, the average efficiency and the fill factor (FF) of the solar cells increase. Device parameters reveal that although the series resistance increased with thicker i-ZnO layer, the solar cells absorbed more photons resulting in higher short-circuit current density (Jsc) and, consequently, higher photo-generated current density (JL). For solar cells with 303-454 nm-thick i-ZnO layer, the best devices achieved efficiency between 15.24% and 15.73% and the fill factor varied between 0.65 and 0.67.  相似文献   

20.
The influence of the InGaAs capping layer on the intermixing behavior of dielectric-capped In0.53Ga0.47 As/In0.81Ga0.19As0.37P0.63 multiple quantum wells (MQWs) was investigated by measuring the change in the photoluminescence spectra after rapid thermal annealing. The magnitude of the energy shift in the transition energy from the first electronic sub-band to the first heavy- and light-hole sub-bands of the MQWs is large when SiO2 and InGaAs hybrid capping layers are employed, but it is rather small when Si3N4 and InGaAs hybrid capping layers are employed. This result indicates that the InGaAs capping layer holds promise for applications involved in the fabrication of integrated photonic devices, but only when it is incorporated with the SiO2 capping layer. The reason why the InGaAs capping layer behaves differently under the SiO2 and Si3N4 capping layers is also discussed. Received: 4 December 1999 / Accepted: 26 September 2000 / Published online: 10 January 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号