首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Calculation of volatile recovery in dynamic headspace techniques such as purge-and-trap (P&T) usually requires a calibration with standard compounds. When these are not available, application of mathematical models to the results obtained by multistep fractionation of a sample can be used for the estimation of recovery. A comparison of the fit quality of quantitative data (GC peak areas) using different calculation procedures and of the results of recovery estimation is presented for different honey volatiles. While models M1-M3 and M5 proposed in this paper correctly describe multistep experimental data for most honey compounds, other volatiles present a recovery behaviour which requires an additional parameter to be considered (models M4 and M6). For the last compounds, recovery is variable along the multistep procedure and the total amount cannot be accurately estimated by the use of multistep P&T fractionation.  相似文献   

2.
We previously showed that the relative response factors of volatile compounds were predictable from either combustion enthalpies or their molecular formulae only 1 . We now extend this prediction to silylated derivatives by adding an increment in the ab initio calculation of combustion enthalpies. The accuracy of the experimental relative response factors database was also improved and its population increased to 490 values. In particular, more brominated compounds were measured, and their prediction accuracy was improved by adding a correction factor in the algorithm. The correlation coefficient between predicted and measured values increased from 0.936 to 0.972, leading to a mean prediction accuracy of ± 6%. Thus, 93% of the relative response factors values were predicted with an accuracy of better than ± 10%. The capabilities of the extended algorithm are exemplified by (i) the quick and accurate quantification of hydroxylated metabolites resulting from a biodegradation test after silylation and prediction of their relative response factors, without having the reference substances available; and (ii) the rapid purity determinations of volatile compounds. This study confirms that Gas chromatography with a flame ionization detector and using predicted relative response factors is one of the few techniques that enables quantification of volatile compounds without calibrating the instrument with the pure reference substance.  相似文献   

3.
The design and features of an on-line purge and cold-trap pre-concentration device for rapid analysis of volatile organic compounds in aqueous samples are discussed. Excessive water is removed from the purge gas by a condenser or a water permeable membrane in order to avoid blocking of the capillary cold-trap. Synthetic mixtures covering concentrations ranging from tenths to tens of ppb's and different chemical classes are used to study the effect of various process factors on the efficiency and selectivity of water removal as well as on the purging recovery. The importance of the concentration of the solutes, the flow rate in conjunction with the volume of the purge gas, and the temperature of the condenser, the cold-trap and the sample is emphasized. Theoretical models describing the purge process and the blocking of the cold-trap agree fairly well with the highly reproducible experimental results (σ = 2–4%). Both the condenser and the Nafion membrane successfully remove water, although some compounds, dependent on volatility and polarity, are partly or completely lost. It is shown that non-polar volatile organic compounds are efficiently enriched so that recoveries between 80–100% and a detection limit of 1 ppt can be obtained. The applicability of the system is illustrated on some examples.  相似文献   

4.
Although produced from simple monomers that contain just carbon and hydrogen, polyolefin have complex molecular structures that are characterized by distributions in molar mass, chemical composition, and branching. Accordingly, a variety of advanced analytical techniques are needed for the comprehensive characterization of the molecular heterogeneity of polyolefins. These include different fractionation, spectroscopic, and thermal analysis methods. Very frequently, method couplings such as two-dimensional liquid chromatography or the coupling of crystallization- and column-based techniques are required. This review presents the current state of the art in multidimensional analysis of complex polyolefins. It discusses methods for bulk analysis as well as different analytical and preparative fractionation protocols. For different types of polyolefins it is shown that a preparative fractionation according to chemical composition/branching or molar mass helps to reduce the molecular complexity of the sample. Sample libraries can be obtained that may have narrow distributions regarding one molecular parameter. A detailed investigation of such library samples regarding other (broadly distributed) molecular parameters helps to fully explore the molecular heterogeneity of a complex sample.  相似文献   

5.
As part of two international collaborative studies, in which 14 laboratories applied capillary GLC to determine the triglyceride (TG) profile of cocoa butter, the performance of different sample introduction techniques, i.e. cold on-column injection (OCI), split injection and programmed-temperature vapouriser (PTV) injection, was compared. In both studies, the participants did not apply a uniform GLC procedure. Synthetic mixtures of triglycerides were chosen to permit an accurate determination of detector response factors. No statistically significant difference was found between the mean values obtained by different injection modes. The OCI, generally recommended as best practice, did not give superior results than the PTV or the split injection techniques.  相似文献   

6.
A system for automatic analysis of volatile compounds by purge-and-cold-trapping/capillary gas chromatography is described. It is suitable for analysis of volatile compounds in a wide variety of samples, such as water, food products and environmental samples. Possibilities and limitations of the system are evaluated in relation to several parameters. The efficiency of different types of cryogenic trap (open tubular, coated, packed) is also investigated; it depends on purge-flow rate, temperature of trapping, and total purge volume. Examples of the analysis of volatile compounds in foods and water are given.  相似文献   

7.
In studies of low concentrations of volatile compounds in air, the method of adsorption on porous polymers and determination by thermal desorption cold trap-injection high-resolution gas chromatography is finding increasing application. Factors considered important for injection and chromatographic separation of volatile compounds by this method were investigated with the use of multivariate techniques. For the amount injected on to the chromatographic column, the factors of main importance were found to be the temperature of the injection block, the thickness of the internal coating of the cold trap and the flow-rate. Strong interaction effects were noted. For the sharpness of the chromatographic peaks, the flow-rate was the most important factor.  相似文献   

8.
To discourage consumption, ethanol is often denatured using both volatile (e.g., methyl ethyl ketone and isopropanol) and nonvolatile (e.g., denatonium benzoate) chemical substances. As a result, the analysis of denatured ethanol samples is usually performed by multiple techniques such as gas chromatography for the volatile denaturants and liquid chromatography for the nonvolatile ones. However, the need for multiple techniques increases the cost of analysis and forms a severe obstruction for on‐site product control. Using the full evaporation technique combined with gas chromatography and flame ionization detection, only one analytical methodology has to be used here to determine both volatile and nonvolatile denaturants in denatured ethanol. Denatonium benzoate is determined as benzyl chloride following an in‐vial reaction. Compared to conventional techniques, the novel method performs equally well, but it is simpler to apply. At the same time, drawbacks of alternative methods are circumvented such as equilibration issues and alterations to the stationary phase when using liquid chromatography with ion pairing agents or matrix effects when applying static headspace gas chromatography. The developed method showed good linearity, repeatability, and recovery toward all analytes and was applied to the analysis of commercial denatured ethanol for disinfection and ethanol‐based windscreen washer fluids.  相似文献   

9.
The studies of evaporative isotopic fractionation in controlled conditions are of particular importance for understanding the mechanism of evaporation fractionation in natural conditions. We present the measurements of the average isotopic fractionation factors during the evaporation of water having different initial isotopic compositions at constant temperature. The results show that the isotopic composition of residual water become more enriched over the time and the initial isotopic composition of evaporating water has considerable effect on the average isotopic fractionation factors. The average isotopic fractionation factors in evaporation of Water A and Water B under the present experimental conditions were found to be 0.9817 ± 0.0044 and 0.9887 ± 0.0031 for oxygen and 0.9178 ± 0.0182 and 0.9437 ± 0.0169 for hydrogen, respectively. The findings of this work should lead to a better understanding and use of stable isotope techniques in isotope hydrology by using a simple technique of evaporation pan.  相似文献   

10.
《Analytical letters》2012,45(6):1027-1039
Abstract

Saffron is one of the most expensive spices. Consequently, it is not so difficult to understand that fraudulent saffron exists. Thus, it was interesting to study the most important flavouring component, in terms of aroma, volatile compound of saffron - safranal - by 13C isotopic analysis. Five saffron samples from different countries have been analysed. Safranal has been extracted by methanol or by Supercritical Fluid Extraction (SFE). The results indicate that there is a significant difference between the synthetic safranal and the natural one. On the contrary, it is difficult to conclude on the difference between the various geographical origins, as the isotopic variations are small. Moreover, it has been found that Supercritical Fluid Extraction allowed the selective extraction of volatile compounds from saffron under optimised conditions. It is a cleaner and faster method of extraction compared to the extraction using organic solvent. Nevertheless, an isotopic fractionation occurs in relation to the extraction yield of safranal.  相似文献   

11.
Atractylodes rhizome is a valuable traditional Chinese medicinal herb that comprises complex several species whose essential oils are the primary pharmacologically active component. Essential oils of Atractylodes lancea and Atractylodes koreana were extracted by hydrodistillation, and the yield was determined. The average yield of essential oil obtained from A. lancea (2.91%) was higher than that from A. koreana (2.42%). The volatile components of the essential oils were then identified by a gas chromatography with mass spectrometry method that demonstrated good precision. The method showed clear differences in the numbers and contents of volatile components between the two species. 41 and 45 volatile components were identified in A. lancea and A. koreana, respectively. Atractylon (48.68%) was the primary volatile component in A. lancea, while eudesma‐4(14)‐en‐11‐ol (11.81%) was major in A. koreana. However, the most significant difference between A. lancea and A. koreana was the major component of atractylon and atractydin. Principal component analysis was utilized to reveal the correlation between volatile components and species, and the analysis was used to successfully discriminate between A. lancea and A. koreana samples. These results suggest that different species of Atractylodes rhizome may yield essential oils that differ significantly in content and composition.  相似文献   

12.
结晶分级技术在支化聚乙烯研究中的应用   总被引:1,自引:0,他引:1  
介绍了近年发展起来的几种结晶分级技术及其在支化聚乙烯结构表征及性能研究方面的应用。利用升温淋洗分级技术(TREF),可根据结晶特性的不同将高分子分离成多个分布较窄的级份,通过分别表征各级份的链结构,从而可获得高分子链结构方面较为准确的信息。基于差示扫描量热技术(DSC)发展起来的两类热分级技术,主要包括逐步结晶热分级(SC)和连续自成核退火分级(SSA)技术,虽然不能从物理上对高分子进行分级,但通过选择适当的操作参数,也能得到一系列与升温淋洗分级实验类似的链结构信息,并且具有设备简单、操作方便、样品用量少、耗时短等优点。本文结合我们自己的工作,对各种分级技术的原理、实验操作及应用进行了系统综述,并展望了结晶分级技术发展的某些可能趋势。  相似文献   

13.
The commercial importance of the volatile mono- and sesqui-terpenoids has resulted in a wide range of techiques being used for extraction, concentration, chromatography, and characterisation of constituents. The major chromatographic technique is gas chromatography, and tandem techniques of chromatography linked to further chromatography and spectroscopy, allow much increased resolution, and greater ease of characterisation of terpenes. A wide range of extraction techniques are discussed, and suitability for particular matrices and sample sizes outlined. Chromatography operating conditions and stationary phases, and techniques for solute identification are laid out. A number of applications of terpene analysis in many different matrices are discussed.  相似文献   

14.
The volatile compounds present in wines are responsible for the quality of the wine aroma. The analysis of these compounds requires different analytical techniques depending on the type of compounds and their concentration. The importance at sensorial level of each compound should be evaluated by using olfactometric techniques and reconstitution and omission studies. In addition, wine aroma is influenced by other factors such as wine matrix, which could affect the compounds’ volatility, decreasing or increasing their concentration in the headspace above the wine. Moreover, when a wine is consumed, several oral physiological variables could affect aroma perception. The focus of this review is to outline the most recent advances in wine aroma analysis and the most innovative techniques in trying to elucidate the main factors that influence wine aroma perception during consumption.  相似文献   

15.
Summary The theory of the evaporation of the liquid stationary phase is elaborated and experimentally verified. On the basis of this theory the role played by the losses in the amount of liquid phase present is quantitatively determined. General techniques are examined which minimize the losses; these techniques are based on saturating the incoming carrier gas with liquid phase vapours and raising the pressure of the carrier gas in the column, e.g. by connecting a capillary to the column outlet in order to offer resistance to the gas flow. The application of these techniques ensures stable performance of the gas chromatographic columns using a volatile liquid phase.  相似文献   

16.
水体中痕量挥发性有机物单体碳同位素组成分析   总被引:2,自引:0,他引:2  
刘国卿  张干  黄世卿  彭先芝  陈鸿汉 《色谱》2004,22(4):439-441
将固相微萃取(SPME)技术与冷阱富集系统相结合,对水体中痕量挥发性有机物进行了单体碳同位素分析,方法检测限较常规SPME提高了一个数量级。在优化的条件下,对20 μg/L的三氯乙烯/四氯乙烯和10 μg/L的苯/甲苯水溶液进行了单体碳同位素分析,相比于纯溶剂(液相)碳同位素值,顶空(气相)同位素分析误差不超过0.5‰,而样本标准偏差为0.3‰。对某受四氯乙烯污染的北京地下水进行了同位素测定,近污染源点(B408)与远污染源点(B230)四氯乙烯的碳同位素值(δ13C)分别为 -37.8‰和-34.45‰  相似文献   

17.
An integrated gas chromatography/Fourier transform infrared spectrometry (GC/FT-IR) system developed for the analysis of environmental pollutants is described. The versatility of the system allows the utilization of many different techniques of sample introduction and manipulation during analysis. The sample can be introduced by direct injection or thermal desorption from an adsorbent cartridge, and can then be separated on one of two capillary columns and detected by FT-IR or an FID. Cold traps and collection cartridges incorporated in the system permit recovery and additional fractionation of samples. Recovered sample and sample fractions can then be re-analyzed by GC/FT-IR or subsequently analyzed by GC/MS or other methods.  相似文献   

18.
A combined approach of subwindow factor analysis and orthogonal projection resolution was used to analyze the volatile components of cut tobacco samples from different sources. After extracted with simultaneous distillation and extraction method, the volatile components in cut tobacco from five different locations were detected by GC-MS. Then, the qualitative and quantitative analysis of the volatile components of cut tobacco from Changde area was completed with the help of subwindow factor analysis resolving two-dimensional original data into pure mass spectra and chromatograms. One hundred and two volatile components among 138 separated peaks were identified and quantified, accounting for about 88.90% of the total content. Finally, orthogonal projection method was used to extract the common peaks from different locations. Among the identified components, there were 74 components coexisting in five studied samples although the relative content of each component showed difference to some extent. The results showed a fair consistency in their GC-MS fingerprints. It was the first time to apply orthogonal projection method to compare different cut tobacco samples, and it reduced the burden of qualitative analysis as well as the subjectivity. The obtained results proved the combined approach powerful for the analysis of complex cut tobacco samples. The developed method can be used to compare the sameness and differences of cut tobacco from different sources and for quality control of cigarette production and materials.  相似文献   

19.
This study assessed the feasibility of gas chromatography with flame ionization detection fingerprinting combined with chemometrics for quality analysis of Atractylodes rhizome. We extracted essential oils from 20 Atractylodes lancea and Atractylodes koreana samples by hydrodistillation. The variation in extraction yields (1.33–4.06%) suggested that contents of the essential oils differed between species. The volatile components (atractylon, atractydin, and atractylenolide I, II, and III) were quantified by gas chromatography with flame ionization detection and confirmed by gas chromatography with mass spectrometry, and the results demonstrated that the number and content of volatile components differed between A. lancea and A. koreana. We then calculated the relative peak areas of common components and similarities of samples by comparing the chromatograms of A. lancea and A. koreana extracts. Also, we employed several chemometric techniques, including similarity analysis, hierarchical clustering analysis, principal component analysis, and partial least‐squares discriminate analysis, to analyze the samples. Results were consistent across analytical methods and showed that samples could be separated according to species. Five volatile components in the essential oils were quantified to further validate the results of the multivariate statistical analysis. The method is simple, stable, accurate, and reproducible. Our results provide a foundation for quality control analysis of A. lancea and A. koreana.  相似文献   

20.
Research on the chemical composition of fossil resins has evolved during the last decades as a multidisciplinary field and is strongly oriented toward the correlation with their geological and botanical origin. Various extraction procedures and chromatographic techniques have been used together for identifying the volatile compounds contained in the fossil resin matrix. Hyphenation between thermal desorption (TD), gas chromatography (GC) and mass spectrometry detection (MS) has been chosen to investigate the volatile compounds fraction from ambers with a focus on Romanite (Romanian amber) and Baltic amber species. A data analysis procedure was developed for the main purpose of fingerprinting ambers based on the MS identity of the peaks generated by the volatile fraction, together with their relative percentual area within the chromatogram. Chromatographic data analysis was based entirely on Automated Mass Spectral Deconvolution & Identification System (AMDIS) software to produce deconvoluted mass spectra which were used to build-up a mixed mass spectra and relative retention scale library. Multivariate data analysis was further applied on AMDIS results with successful discrimination between Romanite and Baltic ambers. A special trial was conducted to generate pyrolysis “like” macromolecular structure breakdown to volatile compounds by gamma irradiation with a high absorbed dose of 500 kGy. Contrary to our expectations the volatile fraction fingerprints were not modified after irradiation experiments. A complementary non-destructive new approach by ESR spectroscopy was also proposed for discriminating between Romanite and Baltic ambers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号