首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We study the magnetic behaviors of a spin-1/2 quantum compass chain (QCC) in a transverse magnetic field, by means of the analytical spinless fermion approach and numerical Lanczos method. In the absence of the magnetic field, the phase diagram is divided into four gapped regions. To determine what happens by applying a transverse magnetic field, using the spinless fermion approach, critical fields are obtained as a function of exchanges. Our analytical results show, the field-induced effects depend on in which one of the four regions the system is. In two regions of the phase diagram, the Ising-type phase transition happens in a finite field. In another region, we have identified two quantum phase transitions (QPT)s in the ground state magnetic phase diagram. These quantum phase transitions belong to the universality class of the commensurate-incommensurate phase transition. We also present a detailed numerical analysis of the low energy spectrum and the ground state magnetic phase diagram. In particular, we show that the intermediate state (h c1 < h < h c2) is gapful, describing the spin-flop phase.  相似文献   

2.

We consider the semiclassical Dirichlet Pauli operator in bounded connected domains in the plane. Rather optimal results have been obtained in previous papers by Ekholm–Kova?ík–Portmann and Helffer–Sundqvist for the asymptotics of the ground state energy in the semiclassical limit when the magnetic field has constant sign. In this paper, we focus on the case when the magnetic field changes sign. We show, in particular, that the ground state energy of this Pauli operator will be exponentially small as the semiclassical parameter tends to zero and give lower bounds and upper bounds for this decay rate. Concrete examples of magnetic fields changing sign on the unit disk are discussed. Various natural conjectures are disproved, and this leaves the research of an optimal result in the general case still open.

  相似文献   

3.
We investigate the electronic structure of Fe/ZnSe/Fe magnetic tunnel junctions for which interdiffusion and reconstruction at the interfaces are considered. Taking into account the ab initio potential profile throughout the different layers of the structure, we discuss about its implications on the tunnel conductance. Our results show that interface reconstruction drives changes in the electronic structure which, in turn, produce an increase of the kinetic energy of the conduction electrons, independently of their spin orientation. We suggest that this reconstruction underlies the low tunnel magnetoresistance (TMR), as it is observed in transport measurements when compared with the theoretical value estimated for sharp interfaces.  相似文献   

4.
The magnetic properties of very thin ferromagnetic Fe films (1–10 atomic layers) in contact with nonmagnetic amorphous metals are investigated. Apart from the demagnetization energy, which supports a magnetization in the plane of the film, an energy of magnetic anisotropy occurs in the interlayer, which has the tendency to orient the magnetization perpendicular to the surface. The anomalous Hall effect of the ferromagnetic films is used to investigate their magnetic properties. From the measurements, we get the applied magnetic field Bs, which is necessary to orient the magnetization perpendicular to the film surface. In addition to a constant term, Bs is proportional to 1/d, which is typical of surface effects and yields the energy of the interface anisotropy. The value of this energy is strongly dependent on the nonmagnetic metal and is smaller for the system Pb/Fe than for Sn/Fe. Furthermore, the experimental results show no drastic reduction of the atomic magnetic moment in the surface layer.  相似文献   

5.
We study the Zeeman effect on the d-wave superconductor and tunneling spectrum in normal-metal(N)/d-wave superconductor(S) junction by applying a Zeeman magnetic field to the S. It is shown that: (1) the Zeeman magnetic field can lead to the S gap decreasing, and with the increase in Zeeman energy, the superconducting state is changed to the normal state, exhibiting a first-order phase transition; (2) the Zeeman magnetic field may make the zero-bias conductance peak split into two peaks, and the energy difference between the two splitting peaks in the conductance spectrum is equal to 2h 0 (h 0 is the Zeeman energy); (3) both the barrier strength of interface scattering and the temperature can lower the magnitudes of splitting peaks, of which the barrier strength can lead to the splitting peaks becoming sharp and the temperature can smear out the peaks, however, neither of them can influence the Zeeman effect.  相似文献   

6.
This paper concerns the asymptotic ground state properties of heavy atoms in strong, homogeneous magnetic fields. In the limit when the nuclear charge Z tends to ∞ with the magnetic field B satisfying B>> Z 4/3 all the electrons are confined to the lowest Landau band. We consider here an energy functional, whose variable is a sequence of one-dimensional density matrices corresponding to different angular momentum functions in the lowest Landau band. We study this functional in detail and derive various interesting properties, which are compared with the density matrix (DM) theory introduced by Lieb, Solovej and Yngvason. In contrast to the DM theory the variable perpendicular to the field is replaced by the discrete angular momentum quantum numbers. Hence we call the new functional a discrete density matrix (DDM) functional. We relate this DDM theory to the lowest Landau band quantum mechanics and show that it reproduces correctly the ground state energy apart from errors due to the indirect part of the Coulomb interaction energy. Received: 20 October 2000 / Accepted: 3 November 2000  相似文献   

7.
The effective mass of electrons in low-dimensional semiconductors is position-dependent. The standard kinetic energy operator of quantum mechanics for this position-dependent mass is non-Hermitian and needs to be modified. This is achieved by imposing the BenDaniel-Duke (BDD) boundary condition. We have investigated the role of this boundary condition for semiconductor quantum dots (QDs) in one, two and three dimensions. In these systems the effective mass m i inside the dot of size R is different from the mass m o outside. Hence a crucial factor in determining the electronic spectrum is the mass discontinuity factor β = m i/m o. We have proposed a novel quantum scale, σ, which is a dimensionless parameter proportional to β 2 R 2 V 0, where V 0 represents the barrier height. We show both by numerical calculations and asymptotic analysis that the ground state energy and the surface charge density, (ρ(R)), can be large and dependent on σ. We also show that the dependence of the ground state energy on the size of the dot is infraquadratic. We also study the system in the presence of magnetic field B. The BDD condition introduces a magnetic length-dependent term (√ħ//eB) into σ and hence the ground state energy. We demonstrate that the significance of BDD condition is pronounced at large R and large magnetic fields. In many cases the results using the BDD condition is significantly different from the non-Hermitian treatment of the problem.  相似文献   

8.
We present the first study of a driven nonequilibrium lattice system in the two-phase region, withshifted periodic boundary conditions, forcing steps into the interface. When the shift corresponds to small angles with respect to the driving field, we find nonanalytic behavior in the (internal) energy of the system, supporting numerical evidence that interface roughness is suppressed by the field. For larger shifts, the competition between the driving field and the boundary induces the breakup of a single strip with tilted interfaces into many narrower strips with aligned interfaces. The size and temperature dependences of the critical angles of such breakup transitions are studied.  相似文献   

9.
We study thermal entanglement of XXZ Heisenberg chain under rectangle magnetic field. Under this magnetic field B, the region of thermal entanglement in terms of B and temperature T can be extended. Moreover, one can improve threshold temperature, where entanglement vanish, just by increasing the strength of magnetic field. This effect is similar to that of the anisotropic coupling of spin in XY plane but provide us a realizable method to improve threshold temperature.  相似文献   

10.
This paper reports on the results of the systematic analysis of the atomic and electronic structure of the Me/α-Al2O3(0001) interfaces for two series of isoelectronic metals (Me = Cu, Ag, Au and Ni, Pd, Pt), depending on the termination of the oxide substrate and the configuration of oxide films. The calculations have been performed by the pseudopotential method in the plane-wave basis set. The adhesion energy of metal films has been calculated depending on the cleavage plane. It has been shown that the adhesion energy is maximum at the oxygen interface, which is caused by the ion component in chemical bonding at this interface. The aluminum and aluminum-enriched interfaces are characterized by the metallic type of bonding. The local densities of states and the charge distribution near the interface have been analyzed. It has been demonstrated that oxygen vacancies at the interface substantially weaken the adhesion due to the partial breaking of Me-O bonds.  相似文献   

11.
顾文娟  潘靖  胡经国 《物理学报》2012,61(16):167501-167501
将铁磁共振频率看成外磁场的函数, 讨论了垂直场下磁性膜中的铁磁共振现象. 结果显示: 当外磁场平行于膜面, 并考虑磁膜具有垂直磁晶各向异性情形时, 其磁共振频率随外磁场的变化分为高频支和低频支两种情况, 具体的依赖关系取决于磁膜内磁晶的各向异性; 当外磁场垂直于膜面, 其磁共振频率随外磁场的关系仅存在一支, 一般地, 磁共振频率随外磁场的增加单调地非线性减小, 但当立方磁晶各向异性场Hk1 与单轴磁晶各向异性场Ha之比值介于2/3 < Hk1/Ha <1时, 其磁共振频率随外磁场的增加单调增加, 这与相关的实验结果一致. 研究结果表明: 磁薄膜中有无垂直于膜面的磁各向异性可以通过其磁共振谱的测量进行辨析.  相似文献   

12.
We report spin-polarized transport experiments across antiphase domain boundaries which act as atomically sharp magnetic interfaces. The antiphase boundaries are prepared by growing Fe(3)O(4) epitaxially on MgO, the magnetic coupling over a large fraction of these boundaries being antiferromagnetic. Magnetoresistance measurements yield linear and quadratic field dependence up to the anisotropy field for fields applied parallel and perpendicular to the film plane, respectively. This behavior can be explained by a hopping model in which spin-polarized electrons traverse an antiferromagnetic interface between two ferromagnetic chains.  相似文献   

13.
This work presents a theoretical study of the energy spectrum of GaAs/AlGaAs concentric double quantum rings, under an applied magnetic field directed perpendicular to the ring plane. The Schrödinger equation for this system is solved in a realistic model consisting of rings with finite barrier potentials. Numerical results show that increasing the magnetic field intensity leads to oscillations in the ground state energy which, in contrast to the usual Aharonov-Bohm oscillations, do not have a well defined period, due to the coupling between inner and outer ring states. However, when one considers an elliptical geometry for the rings, the energy spectra of the inner and outer ring states are decoupled and the periodicity of the oscillations is recovered.  相似文献   

14.
We investigate the influence of a perpendicular magnetic field on a bound polaron near the interface of a polar-polar semiconductor with Rashba effect. The external magnetic field strongly changes the ground state binding energy of the polaron and the Rashba spin-orbit (SO) interaction originating from the inversion asymmetry in the heterostructure splits the ground state binding energy of the bound polaron. In this paper, we have shown how the ground state binding energy will be with the change of the external magnetic field, the location of a single impurity, the wave vector of the electron and the electron areal density, taking into account the SO coupling. Due to the presence of the phonons, whose energy gives negative contribution to the polaron's, the spin-splitting states of the bound polaron are more stable, and we find that in the condition of week magnetic field, the Zeeaman effect can be neglected.  相似文献   

15.
Ferromagnetic spin chains of a hexagonal lattice coupled by a weak antiferromagnetic interaction J1 develop a helix arrangement if the intrachain antiferromagnetic NNN exchange J2 is sufficiently large. We show that the classical minimum energy spin configuration is an umbrella when an external magnetic field is applied. The scenario is dramatically changed by quantum fluctuations. Indeed we find that the zero point motion forces the spins in a plane containing the magnetic field so that classical expectation is deceptive for our model. Our result is obtained by controlled expansion in the low field-long wavelength modulation limit. Received: 9 September 1997 / Revised: 15 October 1997 / Accepted: 17 November 1997  相似文献   

16.
We present a numerical study of finite strain stress fields near the tip of an interface crack between a rigid substrate and an incompressible hyperelastic solid using the finite element method (FEM). The finite element (FE) simulations make use of a remeshing scheme to overcome mesh distortion. Analyses are carried out by assuming that the crack tip is either pinned, i.e., the elastic material is perfectly bonded (no slip) to the rigid substrate, or the crack lies on a frictionless interface. We focus on a material which hardens exponentially. To explore the effect of geometric constraint on the near tip stress fields, simulations are carried out under plane stress and plane strain conditions. For both the frictionless interface and the pinned crack under plane stress deformation, we found that the true stress field directly ahead of the crack tip is dominated by the normal opening stress and the crack face opens up smoothly. This is also true for an interface crack along a frictionless boundary in plane strain deformation. However, for a pinned interface crack under plane strain deformation, the true opening normal stress is found to be lower than the shear stress and the transverse normal stress. Also, the crack opening profile for a pinned crack under plane strain deformation is completely different from those seen in plane stress and in plane strain (frictionless interface). The crack face flips over and the tip angle is almost tangential to the interface. Our results suggest that interface friction can play a very important role in interfacial fracture of soft materials on hard substrates.  相似文献   

17.
18.
We report inelastic light scattering measurements of spin excitations on coupled electron bilayers with relatively large tunneling gaps at total filling factor νT=1. We show that the pseudospin polarization order parameter, where the pseudospin labels the occupation of symmetric and antisymmetric levels, can be determined from the energy of long wavelength spin excitations. Our experiments indicate that the order parameter in the quantum Hall ground state collapses at the incompressible–compressible phase transition. The latter is driven by decreasing the tunneling gap through the application of an in-plane magnetic field.  相似文献   

19.
We study ground states and far-infrared spectra (FIR) of two electrons in four-minima quantum-dot molecule in magnetic field by exact diagonalization. Ground states consist of altering singlet and triplet states, whose frequency, as a function of magnetic field, increases with increasing dot–dot separation. When the Zeeman energy is included, only the two first singlet states remain as ground states. In the FIR spectra, we observe discontinuities due to crossing ground states. Non-circular symmetry induces anticrossings, and also an additional mode above ω+ in the spin-triplet spectrum. In particular, we conclude that electron–electron interactions cause only minor changes to the FIR spectra and deviations from the Kohn modes result from the low-symmetry confinement potential.  相似文献   

20.
In this work, we present a theoretical study of a quantum dot–microcavity system which includes a constant magnetic field in the growth direction of the micropillar. First, we study the zero temperature case by means of a self-consistent procedure with a trial function composed of a coherent photon field and a BCS function for the electron–hole pairs. The dependence of the ground state energy on the magnetic field and the number of polaritons is found. We show that the magnetic field can be used as a control parameter for the photon number, and we make explicit the scaling of the total energy with the number of polaritons. Next, we study this problem at finite temperatures and obtain the scaling of the critical temperature with the number of polaritons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号