首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nanographite coated with ferromagnetic substances such as iron or iron oxide is a potential material for microwave absorption because of its favorable structural, magnetic, and electrical characteristics. In this paper, deposition on surfaces of acid functionalized and microwave-exfoliated nanographite particles with the use of fluidized bed system is reported. Acid functionalization improves iron adhesion and exfoliation reduces the flake thickness. The parameters influencing the deposition process are considered. It is demonstrated that Faraday’s laws of electrolysis can be used for these systems if the charge transfer from solid cathode to bed particles is uniform. This requirement is satisfied only above some critical values of suspension density, electrolyte concentration, and stirring rate. The optimized values of current density are required for each specific system, as low current density leads to non-uniform deposition with local nucleation, when high a current density induces too rapid nucleation and promotes iron hydroxo complex formation. Deposition time also should be optimized for any specific system, as the expected amount of deposit cannot be formed longer because of side reactions.  相似文献   

2.
The film growth under high magnetic field using a super-conducting magnet is discussed from the view point of a magnetization energy. The film configuration in nickel eletrodeposits with and without the high magnetic field was examined by means of the AFM (Atomic Force Microscopy), In the absence of magnetic field, the film surface appeared irregular structure. However, when the magnetic field was imposed in parallel to the cathode plate, nickel deposited shown clearly ordered stationary structure. The experimental results could be explained by nickel magnetic anisotropy. On the other hand, when the field was imposed in perpendicular to a cathode plate, deposition structure is controlled by the fluid motion induced by Lorentz force.  相似文献   

3.
通过测定甲醇渗透率,详细研究了阳极支撑层的聚四氟乙烯(PTFE)含量对全被动式直接甲醇燃料电池(DMFC)甲醇传质和电池性能的影响。 膜电极集合体均使用相同的阳极催化层,膜和阴极。 实验结果表明,随着阳极支撑层PTFE含量的提高,甲醇渗透速率明显减小。 其含量较高时,甲醇传质阻力较大,会导致电池在很低的电流密度下就出现传质控制区。 采用PTFE质量分数为40%的支撑层时,DMFC以9 mol/L甲醇为燃料最大功率密度可达32×10-3 W/cm2,也进一步证明了适当提高阳极支撑层的憎水性,既有助于减少甲醇的渗透,又缓解了阴极的“水淹”问题。  相似文献   

4.
The deposition of colloidal magnetite particles onto graphite and mica surfaces induced by solvent evaporation is studied using atomic force microscopy. After evaporation under ambient conditions we observe polydisperse beadlike aggregates; the mean aggregate diameter is larger on graphite than on mica. After evaporation at elevated temperatures we observe a variety of effects, including enhanced particle aggregation and spinodal-like deposition patterns. To explain these trends, we propose mechanisms involving the wetting properties of the solvent. We have also made a brief study of the effects of applied magnetic fields on the formation of aggregates. A field applied parallel to the surface enhances aggregation and favors deposition patterns characteristic of hole-nucleation processes. A perpendicular field leads to a reduction in aggregate size and favors a homogeneous distribution of particles on the surface. These effects are explained in terms of the likely orientation of the dipolar particles on the surface.  相似文献   

5.
Activated carbon aerogels (ACAs) with high bimodal porosity were obtained for lithium/sulfur batteries by potassium hydroxide (KOH) activation. Then sulfur–activated carbon aerogels (S–ACAs) composites were synthesized by chemical deposition strategy. The S–ACAs composites were characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy, and N2 adsorption/desorption measurements. It is found that the activated carbon aerogels treated by KOH activation presents a porous structure, and sulfur is embedded into the pores of the ACAs network-like matrix after a chemical deposition process. The Li/S–ACAs (with 69.1 wt% active material) composite cathode exhibits discharge capacities of 1,493 mAh g?1 in the first cycle and 528 mAh g?1 after 100 cycles at a higher rate of C/5 (335 mA g?1). The S–ACAs composite cathode exhibits better electrochemical reversibility, higher active material utilization, and less severe polysulfide shuttle than S–CAs composite cathode because of high bimodal porosity structure of the ACAs matrix.  相似文献   

6.
The phenomenon called growth advantage in stationary phase (GASP) originally discovered by Kolter et al. was confirmed using two bacterial strains, Escherichia coli ZK126Nalr and ZK126Smr, under the geomagnetic field. However, when the same experiment was conducted in an inhomogeneous high magnetic field of 5.2-6.1 T, almost no death of ZK126Smr was observed and the GASP phenomenon disappeared. When the same experiment was conducted in a homogeneous magnetic field of 7 T, the GASP was significantly delayed due to the much slower death rate of ZK126Smr than that in the geomagnetic field. These data are consistent with our previous finding that a high magnetic field reduces the death rate of bacteria and enhances their survivability in a stationary phase.  相似文献   

7.
Cathode erosion continues to be a problem hindering the widespread application of plasma technology. In this work, cathode erosion was studied on titanium, stainless steel 314, copper-nickel 10% and 30%, and copper 122 for magnetically rotated arcs operating in argon, nitrogen, and argon/hydrogen mixtures at a constant magnetic flux density of 0.1 T Titanium and stainless steel gave very low erosion rates in argon (0.2 and 0.3, g/C respectively). Cupronickels were shown to be suitable for nitrogen and hydrogen plasmas. The slope of hydrogen solubility versus temperature in the cathode material was found to be important in determining hydrogen plasma erosion characteristics. When the plasma gas has a high solubility in the cathode material, or can react with the cathode, a negative erosion rate may result. When gas solubility in the cathode is low, oxide stability and mode of electron emission may govern the erosion rate. A high gas solubility in the cathode material, as with hydrogen, can result in mechanical erosion due to micro-explosions near the cathode surface.  相似文献   

8.
Development of aqueous rechargeable zinc ion battery is an important direction towards grid energy storage sought in various applications.At present,the efficient utilization of aqueous rechargeable zinc ion batteries has been seriously affected due to the defects nature of the cathode materials,such as poor capacity,limited rate performance,and limited cycle stability.Therefore,the search for high-performance cathode materials is a main challenge in this field.Herein,we in-situ prepared graphdiyne-wrapped K0.25·MnO2(K0.25·MnO2@GDY)hybrid nanowall arrays as the cathode of aqueous rechargeable zinc ion battery.The hybridnanowall arrays have obviously alleviated the pulverization and sluggish kinetic process of MnO2 cathode materials and shown high specific capacity(520 mA·h/g at a current density of 55 mA/g),which is near-full two-electron capacity.The high specific capacity was resulted from more than one Zn2+(de)intercalation process occurring per formula unit,in which we observed a structural evolution that partially stemmed from ion exchange between the intercalated K+and Zn2+ions during the discharge process.The present investigation not only provides a new material for the aqueous rechargeable Zn ion batteries,also contributes a novel route for the development of next generation aqueous rechargeable Zn ion batteries with high capacity.  相似文献   

9.
Yu  Q. S.  Yasuda  H. K. 《Plasmas and Polymers》2002,7(1):41-55
DC cathodic polymerization of trimethylsilane (TMS) was carried out in plasma reactors with and without using anode assembly. In DC cathodic polymerization, the TMS plasma polymers are mainly deposited on the cathode (substrate) surface. As a result, fast deposition of TMS plasma polymers was easily achieved in DC cathodic polymerization as compared with AF or RF plasma polymerization. DC cathodic polymerization without using anode assembly has its advantageous features that the size and number of substrates (as cathodes) are not restricted by the size and the location of anode assembly. It was found that the maximum deposition rate on the cathode surfaces was obtained without anode assembly. The DC cathodic polymerization of TMS was conducted also in a large volume reactor with multiple cathodes (substrates). The same deposition mechanisms for DC cathodic polymerization with a single cathode also apply to the multiple cathodes. Uniform deposition on each cathode could be obtained with appropriate spacing of multiple cathodes and by adjusting the operational parameters, which are based on the current density and the system pressure.  相似文献   

10.
This overview describes the results of our recent study of the application of electrochemical nanotechnology to the fabrication of magnetic recording materials, interconnects in ultra-large-scale integrated (ULSI) devices, energy storage materials, and on-chip biosensors. It is important to note that electrochemical processes play significant roles in developing and fabrication such sophisticated materials and devices. In the field of magnetic recording, electrodeposition methods for preparing CoNiFe and CoFe soft magnetic thin films with a high saturation magnetic flux density were newly developed, and the significant issues for obtaining those films are highlighted. In the area of ULSI interconnects, we developed a technique using a self-assembled monolayer (SAM) for direct bonding of the interconnect layer to SiO2, and proposed a novel electroless deposition method for fabricating a diffusion barrier layer. In the field of batteries, electrodeposited SnNi alloy was proposed as a future anode material for Li batteries, and electrochemical MEMS processes were shown to be useful for fabricating micro-sized direct methanol fuel cells (DMFCs) as portable batteries for electronics applications. In the area of chemical sensors, we developed a new process for fabricating field effect transistors (FETs) modified with SAMs for on-chip biosensing applications.  相似文献   

11.
The gas dynamics in channels on both sides of a gas-feed direct methanol fuel cell (DFMC) are considered. The basic equations for the flow velocity and density are derived, taking into account the mass and momentum transfer through the channel/backing layer interface. For the practical case of small inlet velocities the analog of the Bernoulli equation is formulated and the exact solution of nonlinear gas dynamics equations is obtained. It is shown that the flow in both the cathode and anode channels is incompressible (its density is constant) and electrochemical reactions affect only the flow velocity v. Simple formulae for v as a function of local current density and effective water drag coefficient are derived.  相似文献   

12.
X-ray absorption spectroscopy (XAS) was used to investigate the local structure arrangements of submicrocrystalline lithium iron phosphate and its precursors. The former material, proven to be very promising as active cathode material in lithium metal and lithium-ion batteries, was synthesized through a new procedure that combines a simple sol-gel precipitation with a moderate temperature (e.g., low cost) heat treatment. X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) spectra taken at the Fe K-edge pointed out the modification of the Fe site during the synthesis steps that allow one to produce the submicrometer size crystalline LiFePO4 (active material) useful for batteries applications. The XAS investigation has shown that such a material is different from the conventional crystalline LiFePO4 on the short-range order. The difference is attributed to the synthesis procedure.  相似文献   

13.
The distributions of the electron pressure, the temperature, the degree of ionization and the concentration of several elements in the cathode and the anode regions of a d.c. arc to which an external magnetic field is applied are studied. The magnetic field causes oscillations of the arc column which lead to an expansion of the optically integrated image of the discharge on the plane of oscillations. It is shown that the electron pressure and the temperature remain constant over a broad region of the discharge. In the cathode region an intensification of the spectral line-intensities is observed, which is discussed in the paper.  相似文献   

14.
The possibility of yttrium, gadolinium, and ytterbium electrodeposition from solutions of their triflates in different ionic liquids at 100°C was investigated. It was shown that these metals could be deposited on the cathode from electrolytes based on ionic liquids with quaternary ammonium cations, and these metals do not deposit from 1-butyl-2,3-dimethylimidazolium triflate. It was established that, in the case of butyltrimethylamonium triflate usage, metal deposition occurs on a copper electrode, and it does not occur on a platinum electrode, and in 1-butyl-1-methylpirrolidinium triflate, the reduction process is possible on both electrodes. Yb3+ reduction occurs step by step via Yb2+ formation. It was shown that the limiting stage of the cathode process is adsorption of a metal cation on the electrode.  相似文献   

15.
16.
A magnetically coupled microcavity hollow cathode discharge device was evaluated for its analytical potential as a boosted atomic emission source. A magnetic field using an electromagnet was applied perpendicular to the axis of the microcavity hollow cathode. The intensity of the atomic emission of copper, aluminum and the ionic emission of magnesium increased with increasing magnetic field until it reached a maximum. A further increase in the field strength did not lead to an enhancement of these emissions. The attainment of the maxima was attributed to the increase in the electron temperature and radial diffusion of the electrons from the center of the microcavity axis. Electron temperatures in the presence of the magnetic field calculated based on the semicorona model were shown to be proportional to the square of the reduced field strength. Further, these maxima were correlated to the energies of the upper levels of the transition studied.  相似文献   

17.
《Liquid crystals》1999,26(4):517-524
The dynamics of nematic director field reorientation in non-Freedericksz geometries, after a magnetic field H is applied at an oblique angle relatively to the initial homogeneous director n 0 ( H not normal to n 0), is studied considering a magnetic reorientation driven by hydrodynamic instabilities (with backflow). This study is carried out for bounded samples between two parallel plates with planar boundary conditions and with rigid anchoring. Linear stability and wave vector selection analysis predict that, when the angle of the magnetic to the initial director field is increased, for a given magnetic field intensity, two transitions from a homogeneous to a transient distorted director field reorientation can occur: a transition at a first critical angle to an aperiodic distorted director field and a transition at a second critical angle to a periodic distorted director field. It is shown that the periodic mode is cut off at a higher reduced field when the magnetic field acts away from the normal direction.  相似文献   

18.
This work aimed to set new guidelines for the quantification of Cr accumulation in solid oxide fuel cell cathodes after operation, and enabled to pinpoint a diffusion-controlled tolerance to Cr-poisoning for increased cathode thickness; the additional cathode material decreases the deposition rate from Cr vapor species in the active layer.These experimentally based findings were obtained by direct comparison of cathode performances measured on a segmented test arrangement enabling the independent control of four cathodes, with different thicknesses, on an anode-support. The cathode thickness-dependent performance degradation was correlated to deliberate poisoning by volatile Cr species stemming from the test arrangement.  相似文献   

19.
Nanostructures made of magnetic cores (from Fe3O4) with attached silver plasmonic nanostructures were covered with a very thin layer of silica. The (Fe3O4@Ag)@SiO2 magnetic–plasmonic nanomaterial can be manipulated using a magnetic field. For example, one can easily form homogeneous layers from this nanomaterial using a very simple procedure: deposition of a layer of a sol of such a nanostructure and evaporation of the solvent after placing the sample in a strong magnetic field. Due to the rapid magnetic immobilization of the magnetic–plasmonic nanomaterial on the investigated surface, no coffee-ring effect occurs during the evaporation of the solvent. In this contribution, we report the first example of a magnetic, silver-based plasmonic nanomaterial for shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). Nanoresonators based on silver plasmonic nanostructures locally enhance the intensity of the exciting electromagnetic radiation in a significantly broader frequency range than the previously used magnetic SHINERS nanoresonators with gold plasmonic nanostructures. Example applications where the resulting nanomaterial was used for the SHINERS investigation of a monolayer of mercaptobenzoic acid chemisorbed on platinum, and for a standard SERS determination of dopamine, are also presented.  相似文献   

20.
We report results from molecular dynamic simulations of the freezing transition of liquid water in the nanoscale hydrophobic confinement under the influence of a homogeneous external magnetic field of 10 T along the direction perpendicular to the parallel plates. A new phase of bilayer crystalline ice is obtained at an anomalously high freezing temperature of 340 K. The water-to-ice translation is found to be first order. The bilayer ice is built from alternating rows of hexagonal rings and rhombic rings parallel to the confining plates, with a large distortion of the hydrogen bonds. We also investigate the temperature shifts of the freezing transition due to the magnetic field. The freezing temperature, below which the freezing of confined water occurs, shifts to a higher value as the magnetic field enhances. Furthermore, the temperature of the freezing transition of confined water is proportional to the denary logarithm of the external magnetic field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号