首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The pitting corrosion behavior of high-purity aluminum covered with barrier-type anodic films, which are formed in neutral borate and phosphate electrolytes, has been examined in 0.5 mol dm?3 NaCl solution at an applied potential of ?0.6 V versus Ag/AgCl, which is slightly nobler than the pitting potential of ?0.64 V in the same solution. The pitting current density, i p, increased with time after an incubation time, t i. The double logarithmic plot of i p and polarization time, t, reveal two straight lines, which are separated at the time, τ. The slope becomes larger after τ for the specimens anodized in the phosphate electrolyte, while it becomes smaller for those in the borate electrolyte. Both the t i and τ increase with the thickness of the anodic films, and at the similar film thickness, they are much larger for the anodic films formed in the phosphate electrolyte than for those in the borate electrolyte. The corrosion process can be divided into three stages: the incubation period up to t i, the pit nucleation period before τ, and the pit growth period after τ. We have discussed the different pitting corrosion behavior of the aluminum specimens covered with the anodic films formed in the borate and phosphate electrolytes in terms of ion selectivity of the anodic films.  相似文献   

2.
In this paper, we report 3D nickel (II) hydroxide thin films with porous nanostructures prepared on Ni foam by direct current electrodeposition from aqueous solution of Ni(NO3)2 through basic chemicals. The effect of deposition temperature on Ni(OH)2 thin film morphology is examined by field emission scanning electron microscopy, which is found to have significant influence on capacitance performance of Ni(OH)2 thin films. Moreover, the effect of annealing temperature on electrochemical capacitance and long-time stability of Ni(OH)2 thin films is investigated. An optimum-specific capacitance value of 2,447?farads?g?1 is obtained for Ni(OH)2 thin film deposited at 20?°C and annealed at 100?°C.  相似文献   

3.
4.
Anatase TiO2 thin films with high optical modulation, better reversibility, fast switching time, and enhanced coloration efficiency were prepared by nebulized spray pyrolysis technique. X-ray diffraction study confirmed the formation of anatase phase TiO2 in the present work. This inference was substantiated from the Raman active modes of A1g, 2 B1g, and 3 Eg corresponding to O–Ti–O bond in TiO2. The PL emission peak observed at 400 nm is corresponds to the indirect transition (X1b?→?Γ3) from the conduction band to the valence band. The average reflectance of TiO2 thin films was varied from 31 to 20%. The electrochemical study revealed the excellent performance of TiO2 films with high optical modulation (ΔT?=?61%), fast switching kinetics (t b ?=?1.6 s, t c ?=?2.4 s), good coloration efficiency (100 cm2 C?1), and better reversibility (86%). The efficient electrochromic behavior of films may be due to the smooth microstructure nature, which provides an easy pathway for the diffusion and charge transfer process of Li+ ions in TiO2 film matrix. The fast transfer of Li+ ion was realized from the electrochemical impedance spectroscopic measurement.  相似文献   

5.
Ni(La)-hydroxide films were prepared from aqueous colloidal solutions containing nickel sulfate and lanthanum acetate in the molar ratio 10:1. Two types of film were made by heating for 15 and 60?min at 300?°C. Thermogravimetry (TG) and X-ray diffraction (XRD) reveal that both films consist of NiO (bunsenite 40%) nanoparticles (particle size?~30?Å), the remainder being amorphous. IR spectroscopy showed that the amorphous phase comprised the α(II)-Ni(OH)2 phase incorporating SO4 2?, carboxylate and water species. Cyclic voltammetry (CV) in a 0.1?M LiOH electrolyte combined with in situ UV-VIS spectroscopy revealed that the colouring/bleaching changes, as a function of applied potential, differed considerably for the two types of film. Ex situ IR spectroelectrochemical measurements at near-grazing incidence angle conditions using P-polarised light (NGIA IR) were performed for films heated for 60?min in 0.1?M LiOH and 0.1?M tetramethylammonium hydroxide (TMAH) electrolytes and cycled 1402 and 1802 times. During the oxidation/reduction cycles the α(II)-Ni(OH)2 phase transforms to the γ(III)-NiOOH phase, while the β(II)-Ni(OH)2 did not develop. This explains the high cycling stability of Ni(La)-hydroxide films. The incorporation of TMA+ ions was observed from the ν(CH3) stretching band intensities in the IR spectra of cycled films.  相似文献   

6.
The crystal structure and electrochemical intercalation kinetics of spinel LiNi0.5Mn1.5O4 such as the resistance of a solid electrolyte interphase (SEI) film, charge transfer resistance (R ct), surface layer capacitance, exchange current density (i 0), and chemical diffusion coefficient are evaluated by Fourier transform infrared (FT-IR) and electrochemical impedance spectroscopy (EIS), respectively. FT-IR shows that LiNi0.5Mn1.5O4 thus obtained has a cubic spinel structure, which can be indexed in a space group of Fd3m with a disordering distribution of Ni. EIS indicates that R s is almost a constant at different states of charge. The thickness of SEI film increases with increasing of the cell voltage. R ct values evidently decreases when lithium ions deintercalated from the cathode in the voltage range from OCV to 4.6 V, and R ct value increases with increasing potential of deintercalation over 4.7 V. i 0 varies between 0.2 and 1.6 mA cm?2, and the solid phase diffusion coefficient of Li+ changed depending on the electrode potential in the range of 10?11–10?9 cm2 s?1.  相似文献   

7.
The physical and electrochemical properties of sol-gel synthesized nickel-doped tin oxide (NTO) thin films were investigated. The X-ray diffraction results showed that NTO samples exhibited a tetragonal structure. The average crystallite size and the unit cell volume of the films were reduced by Ni increment, while the stacking fault probability was increased. Furthermore, the field-emission scanning electron microscopy images clearly displayed that the worm-like surface morphology of the SnO2 thin films was altered to the spherical feature in 3 and 10 mol% NTO samples. Moreover, by virtue of Ni incorporation, the average transparency of the SnO2 thin films rose up from 67 to 85% in the visible region; also, the optical band gap of the SnO2 sample (3.97 eV) increased and the thin film with 3 mol% dopant concentration showed a maximum value of 4.22 eV. The blue/green emission intensities of photoluminescence spectra of SnO2 thin film changed via Ni doping. The Hall effect measurements revealed that by Ni addition, the electrical conductivity of tin oxide thin films altered from n- to p-type and the carrier concentration of the films decreased due to the role of Ni2+ ions which act as electron acceptors in NTO films. In contrast, 20 mol% Ni-doped sample had the highest mobility about 9.65 cm2 (V s)?1. In addition, the cyclic voltammogram of NTO thin films in KOH electrolyte indicated the charge storage capacity and the surface total charge density of SnO2 thin films enhanced via Ni doping. Moreover, the diffusion constant of the samples increased from 2?×?10?15 to 6.5?×?10?15 cm2 s?1 for undoped and 5 mol% dopant concentration. The electrochemical impedance spectroscopy of the NTO thin films in two different potentials showed the different electrochemical behaviors of n- and p-type thin films. It revealed that the 20 mol% NTO thin film had maximum charge transfer at lower applied potential.  相似文献   

8.
《Electroanalysis》2003,15(11):987-990
The electrochemical quartz crystal impedance (EQCI) technique has been applied to investigate glucose oxidation on bare and Ni(OH)2‐modified Au electrodes in 0.2 mol L?1 KOH aqueous solution. The EQCI responses suggest different contributions of H+‐release and OH?‐incorporation reactions of the Ni(OH)2‐film redox process in 0.2 mol L?1 aqueous KOH at different potentials. Glucose adsorption on the Ni(OH)2‐modified Au electrode was studied. A mechanism for potential cyclic redox process of glucose at Ni(OH)2‐modified Au electrode is suggested, mainly based on a comparative EQCI analysis with direct glucose oxidation on bare gold and glucose ad‐/desorption on Ni(OH)2 film.  相似文献   

9.
Nickel hydroxide films were electrosynthesized in the presence of different diluted surfactant solutions by galvanostatic electroprecipitation. Lamellar α-Ni(OH)2 films are obtained using cationic surfactant cetyltrimethylammonium bromide (CTAB), anionic surfactant sodium dodecyl sulfate (SDS), and also neutral surfactant Tween® 80. The films were structurally and morphologically characterized by X-ray diffraction, thermal gravimetric analysis, Fourier transform infrared spectroscopy, and scanning electron microscopy, and electrochemically by cyclic voltammetry and electrochemical quartz crystal microbalance (EQCM). The results evidenced that SDS remains intercalated between the lamellae of α-Ni(OH)2. Albeit the presence of CTAB and Tween® 80, it was noticed in FTIR spectra that the surfactants did not intercalate. The morphology was affected by the presence of different surfactants. All studied surfactants displaced the oxidation potential (E O) of Ni2+/Ni3+ process to less positive values. Also, the presence of surfactants improved the electrode charge efficiency and the charge response for the same number of moles of nickel ions deposited. The ratio of the charge and frequency change is 4.4 times bigger for films deposited with SDS when compared with pure α-Ni(OH)2 films.  相似文献   

10.
Both the oxidation of Cu0 at dropping amalgam electrodes immersed in solutions of benzotriazole (BTA) and the reduction of CuII at a dropping mercury electrode from BTA solutions have been investigated by the single potential-step chronocoulometric technique. The dependence of the charge Q(t) flowing as a consequence of a given potential jump EiEf upon the initial and final potentials Ei and Ef, as well as upon the time t elapsed from the instant of the potential jump provides direct evidence for the presence of a single adsorbed monolayer of a CuI compound on a mercury electrode immersed in a CuII solution containing BTA, at applied potentials positive to ≈?0.4 V/SCE. Analogous measurements carried out at dropping amalgam electrodes reveal the presence of a single adsorbed monolayer of a CuI compound, or else of an adsorbed multilayer, depending on the potential range investigated. The results of the chronocoulometric measurements are in agreement with those of the polarographic measurements of Part I.  相似文献   

11.
We present condensed-phase first-principles molecular dynamics simulations to elucidate the presence of different electron trapping sites in liquid methanol and their roles in the formation, electronic transitions, and relaxation of solvated electrons (emet) in methanol. Excess electrons injected into liquid methanol are most likely trapped by methyl groups, but rapidly diffuse to more stable trapping sites with dangling OH bonds. After localization at the sites with one free OH bond (1OH trapping sites), reorientation of other methanol molecules increases the OH coordination number and the trap depth, and ultimately four OH bonds become coordinated with the excess electrons under thermal conditions. The simulation identified four distinct trapping states with different OH coordination numbers. The simulation results also revealed that electronic transitions of emet are primarily due to charge transfer between electron trapping sites (cavities) formed by OH and methyl groups, and that these transitions differ from hydrogenic electronic transitions involving aqueous solvated electrons (eaq). Such charge transfer also explains the alkyl-chain-length dependence of the photoabsorption peak wavelength and the excited-state lifetime of solvated electrons in primary alcohols.

Condensed-phase first-principles molecular dynamics simulations elucidate the presence of different electron trapping sites in liquid methanol and their roles in the formation, electronic transitions, and relaxation of solvated electrons.  相似文献   

12.
基于密度泛函理论(DFT)设计了一系列不同氧化程度的还原氧化石墨烯片(rGNOs)并研究了其表面的氧化缺陷与吸附的氢氧化镍(Ni(OH)2)之间的相互作用. 结果发现,rGNOs表面的含氧基团与Ni(OH)2之间的吸附能与含氧基团的氧化程度相关. 在吸附Ni(OH)2后,rGNOs的原子间距和电荷分布的变化也都受rGNOs表面的含氧缺陷的氧化程度影响. 理论计算的结果与实验观察的结果一致并能给出合理的解释.我们用简单的恒电位电化学沉积法有效地在rGNOs表面制备了粒径只有5 nm的Ni(OH)2纳米粒子. 在Ni(OH)2/rGNOs制备过程中,氧化石墨烯的电化学还原是关键步骤. Ni(OH)2上吸附的Ni(OH)2因具有更高的吸附能而使其与在镍膜表面直接吸附的Ni(OH)2(在5 mV·s-1下比电容为656 F·g-1)相比具有更高的比电容值(在5 mV·s-1下为1591 F·g-1).rGNOs在吸附Ni(OH)2后构型和电荷分布的变化导致Ni(OH)2具有更低的等效串联电阻和更佳的频率响应.Ni(OH)2/rGNOs优异的赝电容特性表明其有潜力成为新型赝电容器材料.  相似文献   

13.
A method of ultrasonic treatment (UST) was first used to modify the structure and electrochemical performance of nickel hydroxide for the active material of nickel series alkaline batteries. The experimental results showed that UST was an effective method to improve the electrochemical performance of β-Ni(OH)2 such as specific discharge capacity, discharge potential, electrochemical reversibility and oxygen evolution over-potential. The results of electrochemical impedance spectroscopy, powder X-ray diffraction and particle size distribution indicated that the improvement of the performance of β-Ni(OH)2 through UST was attributed to the reduction of the charge-transfer resistance (Rt) and the diffusion impedance (Zw), which resulted from the decrease of the crystallite and particle size and the increase of interlayer spacing. Diffusion coefficient of proton DH of ultrasonic treated β-Ni(OH)2 gained by CV tests was 1.13 × 10^-11 cm^2/s, and the average discharge specific capacity of ultrasonic treated β-Ni(OH)2 electrode was 301 mAh/g.  相似文献   

14.
The selective electrochemical oxidation of the phenol function in the case of hydroxymethyl phenol derivatives (o?, m?, p-hydroxybenzyl alcohol) leads to “reactive polymer” films of polyphenylene oxide substituted by CH2OH groups. The transformation of the hydroxyl function into an ester function by acetyl chloride indicates the reactivity of the CH2OH group. As for the family of carbonylated polyphenylene oxide films, reactivity is limited to the superficial layers of film. Average film thickness is between 50–100 nm; however with the ferrocene-ferricinium system acting as a redox catalyst, it can reach about 300 nm. This catalytic mechanism intervenes only when the oxidation potential of the ferrocene-ferricinium couple is very similar to that of the phenol derivative.  相似文献   

15.
The anodic formation of Ag(I) oxide nanofilms on polycrystalline silver and Ag–Au alloys as well as on low-index single crystals of silver in 0.1?М KOH was examined. By the methods of photocurrent i ph and photopotential E ph measurements, the n-type conductivity of Ag2O film was established. Since the film (6–120 nm) is thinner than the space charge region, the dependence of photocurrent and photopotential appears on the film thickness L: i ph ~L and E ph ~L 2. The transition from polycrystalline silver to single crystals as well as the addition of a small amount of gold (X Au?≤?4 at.%) into the silver lattice decreases the degree of deviation from the stoichiometric composition Ag2O. The parameters of Ag2O film (optical absorption coefficient α, donor defects concentration N D, space charge region W, and Debye’s length of screening L D) depend on the index of a crystal face of silver, volume concentration of gold X Au in the alloy, and film-formation potential E. At Е?=?0.52 V, the sequences of variation of these parameters correlate with the reticular density sequence. The growth of the potential disturbs these sequences. The band gap in Ag2O formed on Agpoly, Aghkl, and Ag–Au is 2.32, 2.23, and 2.19 eV. Flat band potential in Ag(I) oxide, formed on Agpoly in 0.5 M KOH is 0.37 V. The appearance of the clear dependence between the state of the oxide/metal interface and the structure-sensitive parameters of semiconductor Ag(I) oxide phase allows considering the anodic formation of Ag2O on Ag as a result of the primary direct electrochemical reaction, not of the precipitation from the near-electrode layer.  相似文献   

16.
Electrodes modified with polymers derived from the complexes [Ni(salcn)], [Ni(salcn(Me))] and [Ni(salcn(Bu))] were obtained in order to study the kinetics of electrode processes occurring in polymer films, depending on the thickness of the films, the type of electrolyte and the solvent. FTIR and EQCM methods were used to determine the type of mass transported into polymer films during anode processes and the number of moles of ions and solvent. The rate of charge transport through films was determined by the cyclic voltammetry method, by the quantity cD1/2. It was shown that the charge transport was determined by the transport of anions. The kinetics were most efficient for poly[Ni(salcn(Bu))] modified electrodes, obtained from TBAPF6 and working in TBAClO4 and TBABF4. It was also shown that a solvent with a higher DN value and lower viscosity (MeCN) facilitated the transport of the charge through polymer films.  相似文献   

17.
A novel photo-electrochemical and non-enzymatic hydrogen peroxide (H2O2) sensor was fabricated by electrochemically cathodic plating nickel hydroxide (Ni(OH)2) on platinum films coated n-silicon (Pt/n-n+-Si electrode). Nickel oxide hydroxide (Ni(OH)2-NiOOH) films on the Pt/n-n+-Si electrode were formed by cyclic voltammetry in 0.2 M KOH solution. The morphology and composition of Ni(OH)2-NiOOH film were characterized via scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), respectively. A two-electrode cell based on Ni(OH)2-NiOOH/Pt/n-n+-Si electrode and a platinum counter has been used for determination of H2O2 in the absence of reference electrode by photocurrent measurement at a zero bias. In these conditions a sensitivity of 96.9 μA mM?1 cm?2 and a linear response range from 0.02 up to 0.16 mM with a determination limit (S/N?=?3) of 5.4 μM were achieved in KOH solution at pH 13.3. In addition, the electrode also exhibited superior stability, anti-interference and selectivity.  相似文献   

18.
The acid dissociation constants of a wide range of acids in water+acetone mixtures have been combined with values for the free energy of transfer of the proton. ΔG0t(H+ to calculate values for the free energy of transfer of ions which derive only from the charge on the ion. ΔG0t(i)c. As the values of ΔG0t(H+) have been revised, revised values for the total free energies of transfer of cations and anions, ΔG0t(M+) and ΔGot(X-), are given. New data for ΔGot(MXn) is also split into values for ΔG0t(Mn+) (where n=1 and 2) and ΔG0t(X?). These free energies of transfer, both total and those deriving from the charge alone, are compared with similar free energies in other mixtures water+co-solvent. Values for ΔGot(i)c do not conform to a Born-type relationship and show the importance of structural effects in the solvent even when only the transfer of the charge is involved.  相似文献   

19.
The effects of manganese on the structure and electrochemical performance of Al-substituted α-Ni(OH)2 prepared by a chemical co-precipitation method were studied. The results of XRD and IR showed that the Al-substituted Ni(OH)2 with various Mn contents are typical α-phase. The Mn-free sample is labile in alkaline media and partly converted to β-Ni(OH)2. The stability of the samples improves with the increase in Mn content. The results of galvanostatic charge-discharge experiments showed that the addition of Mn increases the difference between the oxygen evolution and charge potentials, which improves the charge efficiency and increases the discharge capacity. The Mn-containing samples display better cycle stability than the Ni/Al sample without Mn. The Al-substituted Ni(OH)2 sample with Mn 9.3% shows the highest discharge capacity during the whole cycle, and the largest discharge capacity is 260 mAh g−1 .The electrochemical transfer resistance (R t) value decreases with the increase of Mn content.  相似文献   

20.
《中国化学快报》2022,33(8):3705-3708
A kind of CdS/Cd-BiOCl immobilized films photocatalyst was prepared. The optical and physicochemical properties of the CdS/Cd-BiOCl photocatalysts were analysed, and the detailed characterization revealed CdS/Cd-BiOCl films photocatalyst with good charge carrier separation effect. The reusabilities and photocatalytic properties of the samples were studied. The 15%CdS/Cd-BiOCl photocatalyst exhibited superior performance in photocatalytic degradation of tetracycline (TC) and favorable stability under visible light irradiation. As for the photodegradation rate of TC, 15%CdS/Cd-BiOCl exhibited an excellent photodegradation activity, which is 4.06 and 9.53 times higher than that of CdS/Cd and BiOCl, respectively. The results showed that dominant active species are ?O2? and ?OH radicals during photodegradation. The charge transfer in Z-scheme CdS/Cd-BiOCl films photocatalyst could synchronously generate conduct band (CB) electrons in BiOCl and valence band (VB) holes in CdS, and metal Cd served as electron mediator. This work can be a reference for the design of film photocatalysts and new insight for photodegradating towards contaminants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号