首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The role of charge carriers in ZnO2/CuO2 planes of Cu0.5Tl0.5Ba2Ca3Cu4−yZnyO12−δ material in bringing about superconductivity has been explained. Due to suppression of anti-ferromagnetic order with Zn 3d10 (S=0) substitution at Cu 3d9 sites in the inner CuO2 planes of Cu0.5Tl0.5Ba2Ca3Cu4O12−δ superconductor, the distribution of charge carriers becomes homogeneous and optimum, which is evident from the enhanced superconductivity parameters. The decreased c-axis length with the increase of Zn doping improves interlayer coupling and hence the three dimensional (3D) conductivity in the unit cell is enhanced. Also the softening of phonon modes with the increased Zn doping indicates that the electron–phonon interaction has an essential role in the mechanism of high-Tc superconductivity in these compounds.  相似文献   

2.
The thermogalvanic power (Seebeck coefficient) of O2- conducting δ-Bi2O3 and δ-(Bi2O3)1−x(Y2O3)x has been measured directly as a function of temperature and partial oxygen pressure in N2---O2 mixtures. The of δ-(Bi2O3)0.75(R2O3)0.25 with R = Tb---Lu was indirectly determined using an isothermal concentration cell technique. Except for pure δ-Bi2O3, the heat of transport is much smaller than the activation energy for O2- conduction for all materials. The vibrational freedom of O2− ions in all δ-stabilized materials is reflected in their IR spectra at room temperature. Two prototypes of a thermogalvanic PO2 meter were tested.  相似文献   

3.
The effect of oxygen nonstoichiometry and barium cation substitution on the structure and superconducting properties of Bi2Ba2−xMxCuO6 +δ(M = Sr, Ru, Rh, Pd, In, Sb or Pb;xchanged from 0 to 0.2) were studied. The cation-substituted samples annealed in oxygen flow contain a superconducting phase withTcinitnear 95 K.  相似文献   

4.
We synthesized T′-La2−xRExCuO4−δ (RE = Sm and Tb) by a co-precipitation method and sintering in vacuum at various temperatures, and investigated relationship among the crystal structure, average valence of Cu, oxygen content and electric conductivity. From X-ray diffraction measurements, it was confirmed that a main phase of the product was T′ structure (S. G.: I4/mmm) regardless of the rare earth element and its concentration, although an impurity phase was observed in a part of samples. In the samples with low average valence of Cu, the resistivity showed a metallic behavior and remarkably decreased at low temperature. Rietveld analyses using synchrotron X-ray diffractions suggested that the electric conductivity was improved by decreasing a bond length of Cu–O1 in the case of La2−xSmxCuO4−δ.  相似文献   

5.
The thermoelectric power (TEP) S versus temperature has been systematically investigated for several series of the superconducting cuprates Tl(Ba,Sr)2Cam−1CumO2m+3−δ (m = 2, 3) and Tl2Ba2Cam−1CumO2m+4+δ (m = 1, 2, 3). The consideration of the S(Tc) curves allows two important points to be found evidence for. The first one deals with the fact that all these superconducting thallium cuprates are systematically overdoped whatever Tc, and whatever the number of Cu or Tl layers; no underdoped superconducting cuprate could be obtained. The second point shows that there exist two classes of Tl cuprates: the weakly overdoped cuprates that exhibit a Tc max ≥ 100 K (all the triple copper layer cuprates and the 2212 cuprates) and those which can be heavily doped that exhibit a Tc max ≤ 90 K (the 2201 and the 1212 cuprates). The different behavior of thallium cuprates compared to YBa2Cu3O7−δ and to bismuth cuprates is discussed.  相似文献   

6.
A critical review of previous investigations of the superconductivity with enhanced Tc ∼ 95 K found in Sr2CuO4−v shows that new physics occurs in a highly overdoped region of the cuprate phase diagram. Moreover, evidence is adduced from the literature that 30% of the oxygen sites in the CuO2 layers are vacant; a conclusion which is at odds with the universally made assumption that superconductivity originates in stoichiometric CuO2 layers. While further research is needed in order to identify the pairing mechanism(s) responsible for the enhanced Tc, we suggest possible candidates.  相似文献   

7.
The p(O2)–Tδ diagram of perovskite-type SrCo0.85Fe0.10Cr0.05O3−δ was determined by the coulometric titration technique in the temperature range 770–1250 K at oxygen partial pressures from 8 10−10 to 0.5 atm. Stability of the cubic perovskite phase of SrCo0.85Fe0.10Cr0.05O3−δ, existing down to the oxygen pressures of 10−3–10−5 atm, was found to be slightly higher than that of SrCo0.80Fe0.20O3−δ, probably due to stabilization of oxygen octahedra neighboring Cr4+ cations. When the oxygen nonstoichiometry of the Cr-containing perovskite decreases from 0.47 to 0.38, the partial molar enthalpy and entropy for overall oxygen incorporation reaction vary in the ranges −165 to −60 kJ mol−1 and 90 to 150 J mol−1 K−1, respectively. Within the stability limits of the single perovskite phase, the p(O2)–Tδ diagram can be adequately described by equilibrium processes of oxygen incorporation, cobalt disproportionation and interaction of cobalt and iron cations, with the thermodynamic functions independent of defect concentrations. Increasing grain size in SrCo0.85Fe0.10Cr0.05O3−δ ceramics from submicron size to 100–200 μm has no effect on the oxygen thermodynamics. The two-electrode coulometric titration technique, based on the alternate use of electrodes for oxygen pumping and e.m.f. measurements, is described and verified by studying oxygen nonstoichiometry of La0.3Sr0.7CoO3−δ and PrOx.  相似文献   

8.
Anisotropy and Hall effect measurements have been performed in calcium-doped, i.e., overdoped YBa2Cu3Oy ((Y1−xCax)Ba2Cu3Oy) thin films witha andc axis orientations. In highly overdoped films (x=0.4), the anisotropy of the normal resistivity decreases and a drastic change in Hall conductivity in the mixed state is observed. The change in Hall conductivity in the overdoped region is consistent with recent experimental results for La2−xSrxCuO4 films and seems to be common in highT c superconductors.  相似文献   

9.
We report a rovibrational analysis of the ν4 and ν6 fundamentals and the 2ν5 overtone of HNSO from high-resolution Fourier transform infrared spectra. The ν6 band (out-of-plane bend) centred at 757.5 cm−1 is c-type. The ν4 band (HNS bend) centred at 905.9 cm−1 is predominantly a-type with a very weak b-type component (). Numerous global perturbations and localized avoided crossings affecting the v4 = 1 rotational levels were successfully treated by inclusion of Fermi and c-axis Coriolis resonance terms between v4 = 1 and v5 = 2, and a b-axis Coriolis resonance term between v4 = 1 and v6 = 1. The latter term gives rise to an avoided crossing with an extraordinary ΔKa = 5 selection rule. The Fermi resonance between v4 = 1 and v5 = 2 gives rise to strong mixing of their rotational wavefunctions in the vicinity of Ka = 18. The resultant borrowing of intensity made it possible for 2ν5 transitions in the range Ka = 16–19 to be assigned and included in a global rovibrational treatment of all three band systems.  相似文献   

10.
Using a Fourier transform spectrometer, we have recorded the spectra of ozone in the region of 4600 cm−1, with a resolution of 0.008 cm−1. The strongest absorption in this region is due to the ν1+ ν2+ 3ν3band which is in Coriolis interaction with the ν2+ 4ν3band. We have been able to assign more than 1700 transitions for these two bands. To correctly reproduce the calculation of energy levels, it has been necessary to introduce the (320) state which strongly perturbs the (113) and (014) states through Coriolis- and Fermi-type resonances. Seventy transitions of the 3ν1+ 2ν2band have also been observed. The final fit on 926 energy levels withJmax= 50 andKmax= 16 gives RMS = 3.1 × 10−3cm−1and provides a satisfactory agreement of calculated and observed upper levels for most of the transitions. The following values for band centers are derived: ν01+ ν2+ 3ν3) = 4658.950 cm−1, ν0(3ν1+ 2ν2) = 4643.821 cm−1, and ν02+ 4ν3) = 4632.888 cm−1. Line intensities have been measured and fitted, leading to the determination of transition moment parameters for the two bands ν1+ ν2+ 3ν3and ν2+ 4ν3. Using these parameters we have obtained the following estimations for the integrated band intensities,SV1+ ν2+ 3ν3) = 8.84 × 10−22,SV2+ 4ν3) = 1.70 × 10−22, andSV(3ν1+ 2ν2) = 0.49 × 10−22cm−1/molecule cm−2at 296 K, which correspond to a cutoff of 10−26cm−1/molecule cm−2.  相似文献   

11.
We present electric and magnetic properties of polycrystalline Pr0.5−δCa0.2+δSr0.3MnO3, for δ between −0.04 and 0.04, where the hole concentration is n=0.5+δ. In this series, we study the effects of moving n away from 0.5 on both, the phase diagram and phase separated state. We found that the low temperature ferromagnetic fraction XFM continuously decreases when n increases. As a result, the samples with n<0.5 (large XFM) exhibit metallic resistivity at low T while for n>0.5 the insulating state predominates. We construct a detailed Tn phase diagram showing the asymmetries around half-doping.  相似文献   

12.
The Coriolis-coupled band system of ν5, ν2, and 2ν3 of CD3I was analyzed by making use of all of the experimental data now available. These data included the high-resolution infrared spectra, microwave spectra, and laser Stark spectra. The analysis gave values, more precise than before, of the spectroscopic constants for ν5, ν2, and 2ν3 and the interaction constants. The determination of the rotational constant A for 2ν3 gave a value for , with which all of the αA constants for CD3I have been completed. These αA values were incorporated with the known value of A6 to give a value for A0.  相似文献   

13.
New measurements are reported for the infrared spectrum of sulfur trioxide, 32S16O3, with resolutions ranging from 0.0015 cm−1 to 0.0025 cm−1. Rovibrational constants have been measured for the fundamentals ν2, ν3, and ν4 and the overtone band 2ν3. Comparisons are made with the earlier high-resolution measurements on SO3, and the high correlation among some of the constants related to the Coriolis coupling of the ν2 and ν4 levels is discussed in order to understand the areas of disagreement with the earlier work. Splittings of some of the levels are observed and the splitting constant for K=3 of the ground state is determined for the first time. Other observed splittings include the K=1 levels of 2ν3 (l=2), the K=2 levels of ν3 and ν4, and the K=3 levels of ν2. The analysis shows that there are level crossings between the l=0 and l=2 states of 2ν3 that allow one to determine the separation of the subband centers for these two states even though access to the l=0 state from the ground state is electric-dipole forbidden. This is a generalized phenomenon that should be found for many other molecules with the same symmetry. The l-type resonance constant, q3, that causes the splitting of the l3=±1, k=±1 levels of ν3 also couples the l3=0 and 2 states of 2ν3.  相似文献   

14.
We prepared thin films of T′-La2CuO4, which usually crystallizes in the T structure, by MBE, and investigated their properties while systematically changing the post-reduction conditions with a view towards obtaining superconductivity along the lines of the parent compound superconductors we have recently reported (O. Matsumoto et al., Phys. Rev. B 79 (2009) 100508(R)). The results indicate that the optimal reduction window is very narrow, near which metallic conductivity is obtained down to 50 K. The resistivity of the T′-La2CuO4 films is in the range of 10−2–10−3 Ω cm, which is several orders of magnitude lower than that of the counterpart T-La2CuO4, the implication of which is briefly discussed from the viewpoint of the difference in electronic structure induced by different oxygen coordination.  相似文献   

15.
Using Fourier-transform spectra (Bruker IFS 120 HR, resolution ≈0.004 cm−1) of NH3 in nine branches of the ν2, 2ν2 and ν4 bands, self-broadening and self-shift as well as self-mixing coefficients have been determined at room temperature (T=295 K) for more than 350 rovibrational lines located in the spectral range 1000–1800 cm−1. A non-linear least-squares multispectrum fitting procedure, including line mixing effects, has been used to retrieve successively the line parameters from 11 experimental spectra recorded at different pressures of pure NH3. The accuracies of self-broadening coefficients are estimated to be better than 2% for most lines. The mean accuracies of line-mixing and line-shift data are estimated to be about 15% and 25%, respectively. The results are compared with previous measurements and with values calculated using a semiclassical model based upon the Robert–Bonamy formalism that reproduces rather well the systematic experimental J and K quantum number dependencies of the self-broadening coefficients.The results concerning line mixing demonstrate a large amount of coupling between the symmetric and asymmetric components of inversion doublets mainly in the ν4 band. The line mixing parameters are both positive and negative. More than two thirds of the lines studied here have a positive shift coefficient. However, for most of them the shift coefficients are negative in the 2ν2 band. They are positive for the R branch of the ν2 band and for the PR and RP branches of the ν4 band. For the other branches they are both positive and negative. Some components of inversion doublets illustrate a correlation between line mixing and shift phenomena demonstrated by a quadratic pressure dependence of line position.  相似文献   

16.
Continuous layers and fine-grained films of β-FeSi2 were synthesized using the implantation of Fe+ ions into Si (1 0 0) with subsequent pulsed nanosecond ion-beam treatment of the implanted layers. The X-ray diffraction studies showed that the pulsed ion-beam treatment brings about the formation of a mixture of two phases: FeSi and β-FeSi2 with strained crystal lattices. Subsequent rapid thermal annealing led to the complete transformation of the FeSi phase into the β-FeSi2 phase with the formation of a textured layer. The data obtained using Raman spectroscopy corroborate the formation of the β-FeSi2 phase with a high degree of silicon crystallinity.The results of measuring the optical absorption point to the formation of β-FeSi2 layers and precipitates with a direct-gap structure, an optical gap of Eg≈0.83 eV. The photoluminescence band peaked at λ≈1.56 μm and caused by direct band-to-band transitions in β-FeSi2 was observed at temperatures lower than 210 K.  相似文献   

17.
We report the (bare) surface redox-reaction rate constant that was determined, along with the chemical diffusivity , by a conductivity relaxation technique on Al-doped single crystal and undoped polycrystal BaTiO3−δ as a function of oxygen activity in its range of −16≤log aO2≤0 at elevated temperatures of 800–1100 °C. It takes a value in the range of −4<log( /cm s−1)≤−1, which is even larger than that of the oxides that are considered best as oxygen membranes. It has been found that the surface reaction step grows more rate controlling as the electronic transference number gets smaller or the electronic stoichiometric composition (δ≈0) is approached. The oxygen potential drop due to the surface reaction was estimated by an oxygen concentration cell technique. The oxygen potential drop grows larger as the stoichiometric composition is approached, that is in accord with the variation of against oxygen activity.  相似文献   

18.
In continuous magnetic fields H up to 28 T, we have studied the out-of-plane transport properties and tunneling characteristics of high-quality nondoped single crystals of the Bi-cuprate family: Bi2Sr2CuO6+δ (Bi2201), Bi2Sr2CaCu2O8+δ (Bi2212) and Bi2Sr2Ca2Cu3O10+δ (Bi2223) grown by an identical method. For all compounds the out-of-plane magnetotransport ρc(H) is negative in the temperature region where ρc(T) shows in the normal state a semiconducting-like temperature dependence. The negative magnetoresistance of ρc corresponds to the suppression of the semiconducting temperature dependence of ρc(T) which is found to be isotropic. For the Bi2201 compound, where the normal state can be reached in the available magnetic fields (28 T), a nearly complete suppression of the low-temperature upturn in ρc(T) is observed in the highest magnetic fields with a tendency towards a metallic behavior down to the lowest temperatures (0.4 K). Using the break-junction technique, especially for the Bi2212 and Bi2232 compounds, a clear superconducting gap structure can be observed. Both for temperatures above the critical temperature and for magnetic fields above the upper critical field, a pseudogap structure remains present in the tunneling spectra. The applied magnetic fields yield a stronger suppression of the superconducting state compared to that of the normal-state gap structures as manifested in ρc(T) transport and tunneling.  相似文献   

19.
The anisotropic and isotropic components of the ν2, ν5 rotation-vibrational Raman bands of 13CH3F were obtained separately. The two upper states are coupled by a strong second-order Coriolis resonance. The anisotropic spectrum was analyzed by means of a program system due to R. Escribano. A contour simulation and a least-squares fit of 233 assigned transitions yielded values for ν5, ΔA5, ΔA2, and Aζ5a, 5b(z). The 13C shifts of ν2 and ν5 were obtained from the isotropic spectrum.  相似文献   

20.
Magnetic and low temperature specific heat measurements have been performed on iron doped YBa2(Cu1−xFex)3O7−δ samples with different oxygen contents (δ0 and δ1). Iron doping induces an orthorhombic to tetragonal transition and a decrease of both Tc and diamagnetic signal. Low temperature specific heat measurements reveal a Schottky type anomaly for δ0 samples with x=0.01 (1.8 K) and x=0.02 (3 K). This anomaly is attributed to magnetic interactions within iron limited chains. A numerical analysis of this effect is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号