首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This brief article provides an overview of the current state of the art in biological imaging mass spectrometry using cluster time-of-flight secondary ion mass spectrometry (TOF–SIMS). Recent and spectacular improvements in terms of sensitivity of TOF–SIMS imaging methods have allowed many biological applications to recently be successfully tested, such as mapping of lipid disorders in human muscles of a patient suffering from dystrophy, localization of surfactins after the swarming of bacteria on a surface, or lipid mapping over whole-body animal sections.  相似文献   

2.
Time-of-flight secondary ion mass spectrometry (TOF-SIMS) using liquid metal ion guns (LMIGs) is now sensitive enough to produce molecular-ion images directly from biological tissue samples. Primary cluster ions strike a spot on the sample to produce a mass spectrum. An image of this sample is achieved by rastering the irradiated point over the sample surface. The use of secondary ion mass spectrometry for mapping biological tissue surfaces provides unique analytical capabilities; in particular, it enables in a single acquisition a large variety of biological compounds to be localised on a micrometer scale and scrutinised for colocalisations. Without any treatment of the sample, this method is fully compatible with subsequent and complementary analyses like fluorescence microscopy, histochemical staining, or even matrix-assisted laser desorption/ionisation imaging. Basic physical concepts, required instrumentation (ion source and mass analyzer), sample preparation methods, image acquisition, image processing, and emerging biological applications will be described and discussed.  相似文献   

3.
The design and performance of a new time-of-flight mass spectrometer is reported. The instrument combines the advantages of a pulsed drawout TOF analyzer with a liquid secondary ion source. Differences from commercially available pulsed TOF analyzers (Wiley/McLaren type) are discussed with regard to operation with ion desorption from a liquid matrix.  相似文献   

4.
In the present work we investigate the denaturation of a functional protein, horseradish peroxidase (HRP), under various experimental conditions using time-of-flight secondary ion mass spectrometry. HRP was immobilized on TiO(2), and the samples were stored under different conditions. The activity of the enzyme was assessed colorimetrically and compared to ToF-SIMS spectra. We show that denaturation of the protein can be monitored using the ToF-SIMS signal of the disulfide bonds, which is related to the tertiary structure of the protein. As disulfide bonds appear in a vast range of proteins, the present findings may be of wide significance; i.e., a tool is provided that can allow the investigation of the presence of an active protein structure by a comparably simple surface analytical method.  相似文献   

5.
6.
Biological tissue imaging by secondary ion mass spectrometry has seen rapid development with the commercial availability of polyatomic primary ion sources. Endogenous lipids and other small bio-molecules can now be routinely mapped on the sub-micrometer scale. Such experiments are typically performed on time-of-flight mass spectrometers for high sensitivity and high repetition rate imaging. However, such mass analyzers lack the mass resolving power to ensure separation of isobaric ions and the mass accuracy for elemental formula assignment based on exact mass measurement. We have recently reported a secondary ion mass spectrometer with the combination of a C60 primary ion gun with a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) for high mass resolving power, high mass measurement accuracy, and tandem mass spectrometry capabilities. In this work, high specificity and high sensitivity secondary ion FT-ICR MS was applied to chemical imaging of biological tissue. An entire rat brain tissue was measured with 150 μm spatial resolution (75 μm primary ion spot size) with mass resolving power (mm 50%) of 67,500 (at m/z 750) and root-mean-square measurement accuracy less than two parts-per-million for intact phospholipids, small molecules and fragments. For the first time, ultra-high mass resolving power SIMS has been demonstrated, with mm 50%?>?3,000,000. Higher spatial resolution capabilities of the platform were tested at a spatial resolution of 20 μm. The results represent order of magnitude improvements in mass resolving power and mass measurement accuracy for SIMS imaging and the promise of the platform for ultra-high mass resolving power and high spatial resolution imaging.
Figure
C60 secondary ion FT-ICR MS provides unprecedented mass resolving power and mass accuracy for SIMS imaging of biological tissue sections. Overlaid selected ion images from rat brain (left) and high spatial resolution imaging of organic dye underneath a TEM grid (right).  相似文献   

7.
New on-line analytical system coupling thin layer chromatography (TLC) and high selective identification unit-time of flight secondary ion mass spectrometry (TOF-SIMS) is introduced in this article. Chromatographic mixture separation and analyte surface deposition followed with surface TOF-SIMS analysis on-line allows to identify the analytes at trace and ultratrace levels. The selected analytes with different detectability and identification possibility were analysed in this hyphenated unit (Methyl Red indicator, Terpinolen and Giberrelic acid). Here, the chromatographic thin layer plays a universal role: separation unit, analyte depositing surface and TOF-SIMS interface, finally. Two depositing substrates and TOF-SIMS compatible interfaces were tested in above-mentioned interfacing unit: modified aluminium backed chromatographic thin layer and monolithic silica thin layer. The sets of positive and negative ions TOF-SIMS spectra obtained from different SIMS modes of analysis were used for analyte identification purposes. SIMS enables analyte detection with high mass resolution at the concentration level that is not achieved by other methods.  相似文献   

8.
9.
A series of 16 polyarylates, with well-controlled and systematically varying chemistry, has been characterized by time-of-flight secondary ion mass spectrometry (TOF-SIMS). The polymers are structurally identical except for the incremental additions of C2H4 units to the backbone and sidechain. From the spectra, peaks characteristic of all polyarylates are identified. Furthermore, evaluation of the spectra and identification of unique signals allow classification of the polyarylates according to sidechain and backbone chemistry.  相似文献   

10.
An automated sample preparation for high throughput accurate mass determinations by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) has been developed. Sample preparation was performed with an automated workstation and automated mass analyses were performed with a commercial MALDI-TOF mass spectrometer. The method was tested with a 41-sample library. MALDI-TOFMS was found to give the needed sensitivity, accurate mass measurement, and soft ionization necessary for structure confirmation, even of mixtures. A mass accuracy of 5 ppm or less was obtained in over 80% of known compound measurements. A mass accuracy better than 10 ppm was obtained for all measurements of known compounds. Analyses of parallel synthesis products resulted in 77% of the measurements with a mass accuracy of 5 ppm or better.  相似文献   

11.
Tandem mass spectrometry measurements have been achieved using time-of-flight secondary ion mass spectrometry (TOF-SIMS) and a post source decay (PSD)-like method. The performance of the method has been demonstrated on model molecules with well-known fragmentation pathways. Several lipids have been fragmented including the phosphocholine ion, phosphatidylcholines, cholesterol and vitamin E. Pure samples were analyzed, and the results compared with those obtained with the same compounds on a quadrupole-TOF hybrid mass spectrometer. Then, the structures of some lipids which are currently observed in the TOF-SIMS imaging of mammalian tissue sections were verified.  相似文献   

12.
Time-of-flight secondary ion mass spectrometry (TOF-SIMS) provides a method of elemental analysis that can distinguish among automotive paint samples of the same or nearly the same color. TOF-SIMS survey spectra were employed to determine the relative abundances of elements in the surface layers of the paint chips. The depth profile of paint samples permitted the analysis of small paint chips, the reproducible results for specific elements, and the identification of each car paint. Seventy-three samples of blue, red, white, and silver automobile paints from the major manufacturers in Korea were investigated using high resolution TOF-SIMS technique. It was found that paints of the same color produced by different manufacturers could be distinguished by this technique. TOF-SIMS is a reliable, nondestructive, and small area analyzing method for characterization of the elemental composition of automotive paint chips.  相似文献   

13.
Time-of-flight secondary ion mass spectrometry (ToF-SIMS) is used for chemical analysis of surfaces. ToF-SIMS is a powerful tool for polymer science because it detects a broad mass range with good mass resolution, thereby distinguishing between polymers that have similar elemental compositions and/or the same types of functional groups. Chemical labeling techniques that enhance contrast, such as deuterating or staining one constituent, are generally unnecessary. ToF-SIMS can generate both two-dimensional images and three-dimensional depth profiles, where each pixel in an image is associated with a complete mass spectrum. This Review begins by introducing the principles of ToF-SIMS measurements, including instrumentation, modes of operation, strategies for data analysis, and strengths/limitations when characterizing polymer surfaces. The sections that follow describe applications in polymer science that benefit from characterization by ToF-SIMS, including thin films and coatings, polymer blends, composites, and electronic materials. The examples selected for discussion showcase the three standard modes of operation (spectral analysis, imaging, and depth profiling) and highlight practical considerations that relate to experimental design and data processing. We conclude with brief comments about broader opportunities for ToF-SIMS in polymer science.  相似文献   

14.
To expand the role of high spatial resolution secondary ion mass spectrometry (SIMS) in biological studies, numerous developments have been reported in recent years for enhancing the molecular ion yield of high mass molecules. These include both surface modification, including matrix-enhanced SIMS and metal-assisted SIMS, and polyatomic primary ions. Using rat brain tissue sections and a bismuth primary ion gun able to produce atomic and polyatomic primary ions, we report here how the sensitivity enhancements provided by these developments are additive. Combined surface modification and polyatomic primary ions provided approximately 15.8 times more signal than using atomic primary ions on the raw sample, whereas surface modification and polyatomic primary ions yield approximately 3.8 and approximately 8.4 times more signal. This higher sensitivity is used to generate chemically specific images of higher mass biomolecules using a single molecular ion peak.  相似文献   

15.
Polydimethylsiloxane (PDMS), polyhydromethylsiloxane (PHMS), and polymethylphenylsiloxane (PMPhS) have been studied by TOF-SIMS to investigate effects of functional group changes on polymer fragmentation mechanisms. Cyclic fragments are observed in the low mass range spectra of PDMS and PHMS, but not in the spectrum of PMPhS. Effects of functional group substitution on the fragmentation mechanisms of polysiloxanes are evident in the high mass range spectra (>1000 Da). Peaks of oligomers cationized by silver dominate the high mass range of the spectra of all low molecular weight polysiloxanes. However, fragmentation patterns of these samples are different. Neutral cyclic fragments cationized by silver are identified in the high mass range of the spectra of PDMS and PHMS, but not in the spectrum of PMPhS. The major fragments of PHMS and PMPhS are [oligomer-14+Ag]+. The PHMS spectrum also shows peaks [oligomer-28+Ag]+. These distinctive fragmentation patterns can be used to identify the polysiloxanes.  相似文献   

16.
To better understand the influence of cholesterol (CH) on dipalmitoylphosphatidylethanolamine (DPPE), Langmuir-Blodgett (LB) model membranes of DPPE with varying amounts of cholesterol were imaged by time-of-flight secondary ion mass spectrometry (ToF-SIMS) and atomic force microscopy (AFM). Cholesterol has a condensing effect on DPPE that at low cholesterol concentrations results in lateral heterogeneity of the LB monolayer. At 4:1 DPPE/CH, islands of DPPE/CH phase exist with a connected DPPE phase. As the concentration of cholesterol is increased, the percolation threshold is crossed and the DPPE/CH phase islands connect to separate the DPPE phase (2:1 DPPE/CH). Finally, at 50 mol % cholesterol a single homogeneous DPPE/CH phase LB monolayer exists. ToF-SIMS of the DPPE/CH phase provides a lower ion signal for the characteristic lipid fragments and substrate apparently owing to the higher molecular density induced by cholesterol. AFM data indicate that the DPPE/CH phase is lower in height than the DPPE phase. As phosphatidylethanolamine is predominant in the inner lipid leaflet of cellular membranes, this work has implications for the understanding of cholesterol domains in the inner leaflet of cells.  相似文献   

17.
Static time-of-flight secondary ion mass spectrometry (ToF-SIMS) is a powerful surface analysis technique for the characterization of protein films because of its chemical selectivity and surface sensitivity. In this study, static ToF-SIMS and principal component analysis (PCA), a multivariate data analysis method, were combined to probe the orientation of surface-immobilized immunoglobulin G (IgG). IgG orientation can enhance its ability to detect its antigen in immunoassay techniques. The IgG used in this work is the mouse monoclonal anti-human chorionic gonadotropin (anti-hCG). Anti-hCG films on different well-defined substrates have been studied using its F(ab')2 and Fc fragments as references. Atomic force microscopy was used to characterize these protein films before static ToF-SIMS analysis. The results from PCA of ToF-SIMS spectra were related to the antibody primary amino acid composition and its three-dimensional structure.  相似文献   

18.
Secondary ion mass spectra and images were obtained from spikes of choline chloride, acetylcholine chloride, and methylphenylpyridinium iodide deposited onto specimens of porcine brain tissue. Samples were subsequently subjected to a dose of 10-keV Cs+ sufficient to suppress secondary ion emission characteristic of the targeted analytes. Following ablation of the samples by massive glycerol clusters generated by electrohydrodynamic emission, secondary ion mass spectra and images could be obtained that reflected the identity and location of the spiked analytes. The absolute intensity of secondary ion emission that followed ablation was found to be between 30 and 100% of the intensity obtained prior to exposure to the high dose of Cs’. Not all chemical noise is removed by ablation, however, so that the signal-to-noise ratios after ablation correspond to between 10 and 85% of their values observed under conditions of low primary ion dose.  相似文献   

19.
Time-of-flight static secondary ion mass spectrometry (TOF-S-SIMS) was used to characterize thin layers of oxy- and thiocarbocyanine dyes on Ag and Si. Apart from adduct ions a variety of structural fragment ions were detected for which a fragmentation pattern is proposed. Peak assignments were confirmed by comparing spectra of dyes with very similar structures. All secondary ions were assigned with a mass accuracy better than 50 ppm. The intensity of molecular ions as well as fragment ions has been studied as a function of the type of organic dye, the substrate, the layer thickness and the type of primary ion. A large yield difference of two orders of magnitude was observed between the precursor ions of cationic carbocyanine dyes and the protonated molecules of the anionic dyes. Fragment ions, on the other hand, yielded similar intensities for both types of dye. As the dye layers deposited on an Ag substrate yielded higher secondary ion intensities than those deposited on a Si substrate, the Ag metal clearly acts as a promoting agent for secondary ion formation. The effect was more pronounced for precursor signals than for fragment ions. The promoting effect decreased as the deposited layer thickness of the organic dye layer was increased.  相似文献   

20.
This work presents a simple method for obtaining homogeneous sample surfaces in matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOFMS) for the automated analysis of peptides and proteins. The sample preparation method is based on applying the sample/matrix mixture onto a pre-deposited highly diluted matrix spot. The pre-deposited crystals act as seeds for the new sample containing crystals which become much smaller in size and more evenly distributed than with conventional methods. This 'seed-layer' method was developed, optimised and compared with the dried-droplet method using peptides and proteins in the 1000-20,000 Da range. The seed-layer method increases the surface homogeneity, spot to spot reproducibility and sample washability as compared with the commonly used dried-droplet method. This methodology is applicable to alpha-cyanohydroxycinnamic acid, sinapinic acid and ferulic acid, which all form homogeneous crystal surfaces. Within-spot variation and between-spot variation was investigated using statistics at a 95% confidence level (n = 36). The statistical values were generated from more than 5000 data points collected from 500 spectra. More than 90% of the sample locations results in high intensity spectra with relatively low standard deviations (RSDs). Typically obtained data showed an RSD of 19-35% within a sample spot as well as in-between spots for proteins, and an RSD of < or = 50% for peptides. Linear calibration curves were obtained within one order of magnitude using internal calibration with a point-RSD of 3% (n = 10). The sample homogeneity allows mass spectra (average of 16 laser shots) to be obtained on each individual sample within 15 sec, whereby a 100 spot target plate can be run in 25 min. High density target plates using the seed-layer method were prepared by spotting approximately 100 picoliter droplets onto the target, resulting in sample spots < or = 500 microns in diameter using a flow-through piezo-electric micro-dispenser. By using this automated sample preparation step lower standard deviations are obtained in comparison to manually prepared samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号