首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
利用光谱技术实现农产品、食品品质无损检测的实质是建立样本光谱信息与样本品质参数之间的机器学习模型。为了获得具有良好泛化性能的机器学习模型,通常需要大量的标记样本,然而,获取样本的光谱信息相对容易,但标注样本品质参数的过程往往涉及到大量的时间和经济成本,并且具有破坏性。主动学习是一种减少训练集有标记样本数量的方法,通过选择最有价值的样本进行标记,而不是随机选择。因此,主动学习能够控制向训练集添加哪些样本,模型不再是被动地接受用于建模的样本。在分类任务中已经提出较多关于主动学习的算法,但回归任务中的研究却相对较少,且现有的用于回归任务的主动学习算法大多是有监督的,即需要少量有标记样本训练初始模型。本文提出了一种基于无监督主动学习方法的训练样本选择策略。该方法首先通过层次凝聚聚类对无标记(标准值)光谱数据集进行多样性划分,获得不同的聚类簇;然后通过局部线性重建算法在每个聚类簇中选择最具代表性的样本构成训练样本集,最后基于训练集构建模型。利用两个年份三个品种苹果的近红外光谱数据,构建了其可溶性固形物含量和硬度的偏最小二乘预测模型,用于验证所提出方法的有效性。实验结果表明:所提出的方法要优于已有的样本选择策略,可以有效地提高模型精度,减少在模型训练中的破坏性理化实验。同时,与随机采样(RS)、Kennard-Stone算法(KS)、光谱-理化值共生距离算法(SPXY)这三种光谱领域常用的样本选择算法相比,该研究所提出的方法表现出了最佳的性能, 基于所提出的无监督主动学习算法选取200个样本作为训练集所建立的可溶性固形物含量预测模型的预测均方根误差相对于其他三种算法降低了2.0%~13.2%,硬度预测模型的预测均方根误差相对降低了1.2%~15.7%。  相似文献   

2.
玉米是世界主要粮食作物之一,使用不符合国家标准的劣质种子将严重影响玉米作物产量,如何快速准确高效鉴别劣质玉米种子亟待解决。采用高光谱图像系统获取900粒“豫安三号”玉米种子的900~1 700 nm光谱曲线,其中训练集和测试集比例为3∶2,分别为540粒和360粒。利用电鼓风式烘干箱对种子损伤处理,获得不同损伤程度的玉米种子样本,采集光谱后完成发芽试验,以此判别种子活力。为提高信噪比,截取963.27~1698.75 nm范围内的玉米种子光谱波段作为有效波段;采用标准正态变换(SNV)、多元散射校正(MSC)两种预处理方式对原始光谱数据预处理,并采用连续投影算法(SPA)、竞争性自适应重加权算法(CARS)两种特征波段提取算法对预处理后的光谱数据提取特征波段,波长反射率作为输入矩阵X,预设样本类别作为输出矩阵Y;最后采用支持向量机(SVM)模型建模分析,研究结果表明:MSC-CARS-SVM模型为最佳模型,模型识别成功率为98.33%,其Kappa系数为0.985。在此基础上,采用遗传算法(GA)对SVM中惩罚系数c和核函数参数g寻优,模型准确率提升至100%,可实现对热损伤劣质玉米种...  相似文献   

3.
基于光谱及成像技术的种子品质无损速测研究进展   总被引:4,自引:0,他引:4  
种子是农业生产过程的重要生产资料。种子质量评价、活力与老化检测、纯度与真伪鉴别、分类与溯源研究是种子品质检测中的常见问题。种子质量主要包含种子含水率、蛋白含量、脂肪酸含量、淀粉含量等,是种子品质分级的重要指标,并且关系到种子存储过程的安全问题。种子活力是种子发芽和出苗率、幼苗生长的潜势、植株抗逆能力和生产潜力的总和;高活力种子具有明显的生长优势和生产潜力。种子老化是指种子活力的自然衰退,表现为种子变色、发芽率低、生长势差、作物减产。种子的纯度与真伪则会影响作物产量和农产品品质;而种子分类与溯源则是保证种子纯度与鉴别种子真伪的重要方法,进而为作物产量与产品品质提供保障。对于种子品质分析,传统方法通常需要对样品做不可逆的破坏性分析,且分析时间长、过程复杂,难以适应现代农业对种子生产环节的需要。因此,开展种子品质无损快速检测技术研究成为当前亟待解决的问题。近年来,随着化学计量学的发展和计算机技术的进步,近红外光谱法以其快速、无损、高效等优势,在农产品、食品、农业投入品等的无损快速分析方面得以广泛的应用。进一步地,将光谱技术与成像技术相结合,高光谱成像技术近年来日益兴起,相比较于传统的光谱技术,高光谱成像技术在获得待测样品的光谱信息的同时,还可以获取样品的空间分布信息以及图像特征。基于近红外光谱及高光谱成像等无损快速检测技术,从种子质量评价、活力与老化检测、纯度与真伪鉴别、分类与溯源研究四方面对近年来关于种子品质无损快速检测文献进行综述。在分析不同检测技术特点的基础上,分别就上述种子品质检测方面的问题加以整理。进而对种子品质无损快速检测的技术特点进行了总结与展望。  相似文献   

4.
基于高光谱技术的玉米种子可视化鉴别研究   总被引:2,自引:0,他引:2  
种子纯度是衡量种子品质的重要指标。提出一种基于近红外(874~1 734 nm)高光谱技术实现玉米种子可视化鉴别的方法。采集4个品种共384个玉米种子样本的高光谱图像数据,随机选择288个样本作为建模集,剩余96个样本作为预测集。对玉米种子光谱曲线进行分析后,通过连续投影算法(SPA)选取7个特征波段作为输入,结合偏最小二乘法判别分析(PLS-DA)模型,对预测集进行预测,获得较好的分类效果,其中RC=0.917 7,RMSECV=0.444 2; RCV=0.911 5,RMSECV=0.459 9,建模集和预测集的总体鉴别率分别为78.5%和70.8%。通过图像处理技术提取高光谱图像中每个玉米颗粒的平均光谱数据,输入建立的SPA-PLS-DA模型,在计算生成的鉴别图中以不同颜色标识不同类别,实现了混杂玉米种子样本的可视化鉴别。对3份不同组成的混杂种子样本进行鉴别,达到了较好的可视化效果。结果表明,通过可视化鉴别技术,可以直观方便地观察混杂种子样本中不同品种种子的分布和数量,为农业生产中种子的纯度鉴别和筛选提供了帮助。  相似文献   

5.
应用太赫兹时域光谱反射成像技术结合广义二维相关光谱法探索玉米种子活力敏感太赫兹波段,并结合支持向量机建立快速无损判别种子活力的分析模型。实验以中地77玉米种子为例,采用人工老化方式(40℃, 100%相对湿度)将种子样本分批老化0, 1, 2, 3, 4天制备不同活力的种子样本,并按照GB/T 3543.4—1995进行种子发芽实验;同时采用Terapluse 4000太赫兹时域光谱仪及反射成像附件采集上述不同老化程度种子样本的太赫兹光谱图像。由于玉米种子的胚乳和种胚的成分差异显著,为探究种子不同组织在老化过程中与活力的相关性,本实验首先采用双高斯滤波器对THz图像中的像素点光谱消噪、峰峰值差分重构图像增强以及阈值分割等预处理无损提取玉米种子不同组织太赫兹吸光度谱。然后以老化天数为扰动量,针对上述提取的样本胚乳和种胚光谱分别作广义二维相关分析,根据实验中同步谱和异步谱中自动峰与交叉峰位置初步解析,可得到与种子活力关系密切的THz波段主要集中在75和36 cm~(-1)区域,同时75和36 cm~(-1)处的光谱信息存在强烈的协同变化且变化方向一致。种子活力与老化天数密切相关,因此根据老化天数分别建立了基于胚乳和种胚吸光度谱的五分类支持向量机模型用于种子活力定性判别,但是其判别准确率仅为59.34%和71.28%,表明该模型无法精细划分种子五个活力等级;实验进一步根据GB4401.1—2008以玉米种子发芽率85%为阈值划分活力高低等级,建立二分类种子活力判别模型,可得胚乳和种胚测试集识别准确率分别可达88.61%和91.73%,模型性能显著提升,增强了THz技术用于种子活力无损粗筛的可行性。实验结果表明:太赫兹反射成像技术以其丰富的指纹谱、低能安全以及图谱合一等特性,有望成为单粒种子活力快速无损测定领域一项崭新、有力的补充技术。  相似文献   

6.
高光谱图像技术是在种子识别领域广泛应用的农产品品质无损检测方法。特征信息的充分提取和最优波段的选择是影响高光谱图像技术种子鉴选在线应用的关键因素。目的在于利用联合偏度算法选择高光谱图像的最优波段,用于开发在线的种子分级系统。论文利用高光谱图像采集系统获取10类共960粒玉米种子在438~1 000 nm(共219个波段)波段范围内的高光谱图像,并提取了种子高光谱图像的平均光谱、图像熵特征。利用联合偏度算法选择了高光谱图像的最优波段,分别建立了基于平均光谱、图像熵、平均光谱和图像熵联合特征条件下的支持向量机种子分类模型,比较不同特征下分类模型的识别精度。实验结果表明:无论是全波段分类模型,还是建立在最优波段基础上的分类模型,利用平均光谱和图像熵联合特征获得的分类精度均高于平均光谱和图像熵两种单一特征模型。在10个最优波段条件下,联合特征分类模型的识别精度达到了96.28%,比光谱均值和图像熵的识别精度分别提高了4.30%和20.38%,也高于全波段联合特征识别模型的93.47%。利用联合特征建立玉米种子分类模型时,基于联合偏度的波段选择算法的分类精度要高于无信息变量消除法、连续投影算法和竞争性自适应重加权算法。该研究为种子高光谱图像识别技术的在线运用提供了可行的途径。  相似文献   

7.
高光谱图像技术是在种子识别领域广泛应用的农产品品质无损检测方法。特征信息的充分提取和最优波段的选择是影响高光谱图像技术种子鉴选在线应用的关键因素。目的在于利用联合偏度算法选择高光谱图像的最优波段,用于开发在线的种子分级系统。论文利用高光谱图像采集系统获取10类共960粒玉米种子在438~1 000 nm(共219个波段)波段范围内的高光谱图像,并提取了种子高光谱图像的平均光谱、图像熵特征。利用联合偏度算法选择了高光谱图像的最优波段,分别建立了基于平均光谱、图像熵、平均光谱和图像熵联合特征条件下的支持向量机种子分类模型,比较不同特征下分类模型的识别精度。实验结果表明:无论是全波段分类模型,还是建立在最优波段基础上的分类模型,利用平均光谱和图像熵联合特征获得的分类精度均高于平均光谱和图像熵两种单一特征模型。在10个最优波段条件下,联合特征分类模型的识别精度达到了96.28%,比光谱均值和图像熵的识别精度分别提高了4.30%和20.38%,也高于全波段联合特征识别模型的93.47%。利用联合特征建立玉米种子分类模型时,基于联合偏度的波段选择算法的分类精度要高于无信息变量消除法、连续投影算法和竞争性自适应重加权算法。该研究为种子高光谱图像识别技术的在线运用提供了可行的途径。  相似文献   

8.
玉米种子穗腐病是危害玉米产量的主要病害之一。利用近红外光谱开展了玉米种子穗腐病判别模型研究。246粒玉米种子由吉林省农业科学院海南育种基地提供,其中96粒玉米种子为穗腐病染病样本,其他150粒玉米种子为同种玉米正常样本。利用MATRIX-Ⅰ型傅里叶近红外光谱仪采集了样本800~2 500 nm范围的近红外光谱信息,并对样本近红外光谱数据利用多元散射校正(MSC)进行预处理。结合玉米内部有机物质的近红外光谱的敏感波段和样本近红外光谱吸收峰挑选了4个优选区间,并采用相关系数法(CA)、连续投影算法(SPA)和竞争性自适应重加权算法(CARS)三种不同原理的特征波长提取算法分别提取了4(1 362,1 760,2 143和2 311 nm)、5(1 227,1 310,1 382,1 450和1 728 nm)和10(1 232,1 233,1 257,1 279,1 313,1 688,1 703,1 705,2 302和2 323 nm)个特征波长。以提取得到的特征波长作为玉米种子穗腐病判别模型输入变量,用0-1(染病-正常)表示样本染病状况作为输出真实值建立支持向量机(SVM)模型,使用网格搜索法结合十折交叉验证法对模型参数进行优化。结果表明,CA-SVM,SPA-SVM和CARS-SVM三种判别模型中训练集和测试集建模准确率均在90%以上。该研究成果为玉米种子病害诊断装置提供了模型基础,且针对优选区间进行特征波长选择的方式也可以为建立其他种子病害判别模型提供参考。  相似文献   

9.
高光谱与机器学习相结合的大白菜种子品种鉴别研究   总被引:1,自引:0,他引:1  
提出了基于高光谱信息的大白菜种子品种分类识别方法。利用近红外高光谱图像采集系统采集了八种共239个大白菜种子样本;提取15 pixel×15 pixel感兴趣区域平均光谱反射率信息作为样本信息;采用多元散射校正预处理方法对光谱进行消噪;验证了Ada-Boost 算法、极限学习机(extreme learning machine, ELM)、随机森林(random forest, RF)和支持向量机(support vector machine, SVM)四种分类算法的分类判别效果。为了简化输入变量,通过载荷系数分析选取了10个大白菜种子品种分类判别的特征波长。实验结果表明,四种分类算法基于全波段的分类识别对81个预测样本的正确区分率均超过90%,最优的分类判别模型为ELM和RF,识别正确率达到了100%;以10个特征波长的分类判别精度略有下降,但输入变量大幅减少,提高了信息处理效率,其中最优分类判别模型为EW-ELM模型,判别正确率为100%,因此以载荷系数选取的特征波长是有效的。利用高光谱结合机器学习对大白菜种子品种进行快速、无损分类识别是可行的,为大白菜种子批量化在线检测提供了一种新的方法。  相似文献   

10.
土壤组分光谱估算过程中校正样本集的构建会影响模型的预测精度。当前结合反射光谱和Kennard-Stone (KS)算法的校正样本集构建策略忽视了土壤反射光谱是土壤属性的综合反映,构建的样本集通常无法很好地代表目标土壤组分的变异。光谱变换方法可以突出目标组分的光谱特征,为此,本文以湖北省江汉平原滨湖地区水稻土为研究对象,结合包括一阶微分(FD)、Savitzky-Golay(SG)、Haar小波变换、标准正态变量变换(SNV)和多元散射校正(MSC)在内的光谱变换方法和KS算法进行校正样本集建构,通过对比不同样本集构建策略对使用偏最小二乘回归(PLSR)建立的土壤全氮含量光谱估算模型预测精度的影响,研究光谱变换是否有助于提高基于KS算法构建的校正样本集的代表性。结果表明:不同光谱变换会影响校正样本集的构建。反射光谱经过SG或Haar小波变换后,再使用KS算法构建校正样本集与直接基于反射光谱使用KS算法构建的校正样本集相同,建立的估算模型精度不变,相对分析误差(RPD)分别为1.41和1.27。结合FD,SNV或MSC变换和KS算法构建的校正集与基于反射光谱使用KS算法构建的校正集不同,建立的估算模型RPD分别从0.95,1.48和1.42提高到1.13、1.78和2.20。研究表明SNV和MSC等光谱变换方法可以提高基于KS算法构建的校正样本集的代表性,并可有效提高模型预测精度。  相似文献   

11.
应用近红外光谱技术快速鉴别玉米杂交种纯度的研究   总被引:3,自引:0,他引:3  
采用近红外光谱分析技术结合定性偏最小二乘法对农大108玉米杂交种的纯度进行了鉴别研究,实验采用农大108杂交种子与母本178种子各100粒进行单粒光谱扫描(建模集与检验集比例为3:1),结果表明:透射孔直径为3 mm 时,所建模型平均鉴别率为99.82%,显著高于透射孔直径为4.5 mm 时所建模型的鉴别率90.96%;采用胚乳面一次光谱、胚面两次平均光谱、胚乳面两次平均光谱和四次平均光谱进行建模,其平均鉴别率筹异不显著,检验集平均鉴别率均达到99%左右,略高于胚面一次光谱;选择透射孔径3.0 mm,4 000~8 000 cm1 光谱范围,种子胚乳面单次光谱所建立的农大108玉米杂交种的种子纯度鉴定模型的建模集和检验集的鉴别率均达到100%.  相似文献   

12.
高光谱图像技术在农产品检测及识别方面有广阔的应用前景。野生黑枸杞经济效益显著,经常被种植黑枸杞冒充。提出一种利用高光谱图像对野生黑枸杞无损快速识别的方法。主要内容和结果如下:(1)共采集256份(野生、种植各128份)黑枸杞在900~1 700 nm范围的高光谱反射光谱,每份平均光谱作为此样品的光谱;(2)采用标准正态变换(SNV)对采集的光谱预处理;基于Kennard-Stone法,按照校正集和预测集比例为2∶1对样品划分,用连续投影算法(SPA)对光谱进行降维处理,提取特征波长30个;分别将全光谱和SPA 提取的30个特征波长作为模型输入,建立支持向量机(SVM)、极限学习机(ELM)和随机森林(RF)识别模型。(3)结果表明,在识别野生黑枸杞模型中,基于全光谱和SPA建立的SVM,ELM和RF模型校正集识别率均高于98.8%,基于全光谱和SPA建立的SVM,ELM和RF模型预测集识别率均高于97.7%。基于全光谱(FS)建立的三种识别模型略优于基于SPA建立的三种识别模型。但从简化模型方面,SPA提取的特征波常数仅为全光谱的11.8%,大大降低了模型运算量。三种模型中,基于随机森林模型无损识别野生黑枸杞效果最好,均达到100%。研究表明,利用高光谱图像技术结合分类模型可快速识别野生黑枸杞。  相似文献   

13.
《光谱学快报》2012,45(10):642-652
Abstract

It is effective to accurately discriminate the sex of silkworm pupae with the same varieties based on near infrared spectroscopy. However, when the model is promoted to classify new varieties of silkworm pupae, the model’s performance becomes worse, due to the cultivation environment and varieties changing. In the aims of improving the generalization ability and accuracy of the model, this paper proposed a model updating strategy based on semi-supervised learning. First, support vector machine identification model was built after the original spectra was pretreated by Savitzky-Golay convolution smoothing operation, which could effectively reduce spectra noise. Then, the support vector machine model gave the pre-labelings of unlabeled silkworm pupae in the updated set, which were divided into male samples and female samples. According to the correlation coefficients that calculated by Pearson correlation coefficient and Euclidean distance, a total of 8 reliable samples were selected from the male and female samples, respectively. The reliable samples were added to the original training set to update the original model. Finally, the updated model was used to test the test sets from the varieties of silkworm pupae that were the same with updated sets.The results showed the performance of the non-updated model for silkworm pupae from the three new varieties just reached 54.55%, 68.52%, 86.84%, respectively. The support vector machine model updated by using Pearson correlation coefficient improved the accuracy to 100%, 96.30%, 97.37%, and the model updated by Euclidean distance increased the identification accuracy of the three varieties that were not involved in the modeling to 100%, 75.93%, 92.10% respectively. The results showed that the performance of the model updated by Pearson correlation coefficient was better than Euclidean distance. The results revealed that the method based on semi-supervised learning could effectively solve the problem of poor universality for sex identification model.  相似文献   

14.
Currently, the transgenic products detection methods are mostly based on visible/near-infrared light spectrum. In addition, it is hard to set up the parameters in the support vector machine (SVM) model and there is a large amount of calculation on spectrum data. To solve these problems, this paper proposed an algorithm based on terahertz (THz) spectrum and SVM using adaptive particle swarm optimize (APSO-SVM) for building up the classifications of transgenic cotton seed. To conduct the transgenic cotton seed classification, within the wavelength region 150 μm—3 mm, the THz spectrums are first sampled from 165 samples of three newest transgenic cotton seeds. Then, the 165 transgenic cotton seeds are recognized based on the APSO-SVM. Experiment results indicate that the total recognition rate is up to 97.3%, which prove that the THz spectrum combined with APSO-SVM can provide a reliable, rapid, simple and nondestructive detection method for transgenic cotton seed.  相似文献   

15.
优质棉种是全面推广棉花精量播种技术的基础。采用近红外高光谱成像技术实现微破损棉种可视化识别,为棉种精选设备的研制奠定理论基础。以未破损和微破损两类棉种各540粒作为样本(其中405粒作为建模集,135粒棉种作为预测集),分批采集874~1 734 nm范围的样本高光谱图像,提取光谱数据并去除首尾两端明显噪声保留955~1 659 nm范围内光谱为棉种样本的光谱。首先使用Kennard-Stone(KS)算法进行样本划分,并通过平滑算法Savitsky-Golay(SG)对光谱进行预处理。采用二阶导数光谱(2nd spectra)方法、连续投影算法(SPA)和主成分载荷(PCA-loading)方法分别选取10,14和11个特征波长。基于全部光谱数据和特征波长建立偏最小二乘判别分析(PLS-DA)模型、K最邻近(KNN)模型和支持向量机(SVM)模型,SPA-PLS-DA模型取得了较好的结果,建模集和预测集的鉴别率分别为91.50%和90.33%。基于SPA-PLS-DA模型分别对未破损样本和微破损样本及其混合样本图像进行识别,取得了较好的识别结果,微破损棉种的识别率达90%以上。结果表明,结合近红外高光谱成像和图像处理技术,能够实现微破损棉种的可视化识别。  相似文献   

16.
模型传递使在特定条件下建立的模型能够应用于新的样品状态、环境条件或仪器状态。本研究在中药金银花中试在线水提过程中,以水提液中的绿原酸含量为研究对象,建立绿原酸含量的近红外定量模型。针对由金银花来源不同带来的模型失效问题,从光谱背景校正的角度出发,提出以KS算法挑选待传递样本中的代表性样本,结合正交信号回归(OSR)光谱背景校正方法,对不同来源样本的近红外光谱进行光谱背景校正,并深入探讨OSR方法实现近红外定量模型在不同来源中试样本间传递的应用原理。经模型传递后,模型对新批次样本预测的RSEP由14.91%下降到7.11%,RPD由2.95上升到5.36,预测准确度明显提高。实验证明,选择代表性样本的KS算法结合OSR光谱背景校正的模型传递方法不仅能减小不同来源原料药之间的偶然误差,同时消除了中试制剂过程和算法本身的系统误差,因此能够有效地改善因样本来源差异而造成的模型失效现象。该研究充分阐释了OSR模型传递方法的应用原理,以光谱背景校正与挑选代表性样本回归的方法实现了近红外定量模型在不同来源原料药中试样本之间的模型传递,增强了模型应对原料药批次间变动的能力,提高了模型的稳健性,为多来源原料药中试在线制剂过程中有效成分含量的快速实时监测提供了有效方法。  相似文献   

17.
棉花精量播种技术目前已经在新疆兵团全面推广,该技术能精确实现一穴一粒的农艺技术指标,但是也对高质量棉种的筛选提出了更高的要求。为了避免播种往年活力不足的棉种而导致发芽率降低的问题,结合机器学习和近红外(NIR)高光谱成像技术(HSI)进行棉种年份精确鉴别,实现棉种的快速无损筛选。采集2016年—2019年近四年外观无明显差异的棉种各360粒,共1 440粒棉种(按照3∶1∶1划分训练集、验证集和测试集)作为样本,按照每批60粒采集915~1 698 nm范围的棉种高光谱图像,去除首尾两端噪声大的光谱,保留1 002~1 602 nm范围的光谱为原始数据。利用Savitzky-Golay(SG)平滑算法对光谱进行预处理,采用主成分载荷方法(PCA-loading)选取13个特征波段,基于全部光谱数据和特征波段(±10 nm)数据建立逻辑回归(LR)、偏最小二乘判别分析(PLS-DA)、支持向量机(SVM)、循环神经网络(RNN)、长短记忆网络(LSTM)和卷积神经网络(CNN)六种分类模型。使用全光谱数据建模时,六种分类模型在测试集上的鉴别准确率分别为96.27%,98.98%,99.32%,96.95%,97.63%和100%,其中CNN和SVM模型取得了较好的结果;使用特征光谱数据建模时,六种分类模型在测试集上的鉴别精度分别为93.56%,97.29%,98.30%,95.25%,94.24%和99.66%,其中CNN和SVM模型仍有较好的分类结果。结果表明,使用全光谱数据建模时,六种分类模型都可以实现较高精度的棉种年份鉴别,使用特征光谱数据建模时CNN和SVM模型的鉴别精度仍可达到98%;其中深度学习方法优于传统机器学习方法,但是传统机器学习方法仍能保持较好的鉴别准确率。因此,结合近红外高光谱成像技术和机器学习方法能够实现棉种年份的高精度鉴别,为棉花精量播种过程中的优质棉种选种技术提供理论依据和方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号