首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 640 毫秒
1.
土壤含水量的变化情况与时空分布对热量平衡、农业墒情等具有显著的影响。利用反射率光谱信息反演土壤含水量的研究,可为实现土壤含水量速测、揭示土壤含水量时空变异规律提供科学依据。构建不同含水量黑土土壤反射率光谱半经验模型,深入探究土壤重量含水量与反射率光谱的关系。 制备了12种不同湿度的土壤样品。 采用ASD Field Spec Pro 3地物波谱仪对制备的不同湿度梯度的黑土土壤进行反射率光谱测量。 利用菲涅耳反射率建立土壤表面反射模型;在以往的研究中,Kubelka-Munk (KM)模型中的漫反射率R通常被视为对于给定材料和照明波长的常数或需要反演的参数。通过研究发现,漫反射率R不仅与材料和波长有关,还与土壤含水量相关。利用与土壤含水量相关的吸收系数及散射系数描述了土壤含水量与漫反射率R的关系,并基于KM理论对体散射分量进行建模;进而构建不同含水量黑土土壤反射率光谱半经验模型。 根据实际测量数据选用最小二乘算法对模型参数进行反演,并通过分析反演参数简化模型。最后,将未参与建模的不同含水量梯度的数据代入模型中,验证模型的有效性。结果表明:对比不同含水量土壤反射率光谱的模拟值与实测值在400~2 400 nm波段范围内的模拟精度发现,含水量为200 g·kg-1的土壤反射率光谱的均方根误差最大,为0.008,含水量为40 g·kg-1的土壤反射率光谱的均方根误差最小,为0.000 6,不同含水量下土壤样品反射率光谱的均方根误差的均值是0.005 1。在400~2 400 nm波段范围内,不同波长下黑土土壤反射率光谱的预测均方根误差基本低于0.008,1 920 nm波长处的预测均方根误差最小,为0.002 062。采集长春地区的土壤检验模型的可靠性,配制15个不同含水量样品并对其进行反射率光谱测量。选取9个样品数据用于建模,6个样品数据用于验证。结果表明:在400~2 400 nm波段范围内,不同波长下的长春土壤反射率光谱的预测均方根误差基本低于0.015,525 nm波长处的预测均方根误差最小,为0.000 922 5。综上所述,所建立的模型具有很高的预测精度,可很好地适用于不同含水量黑土土壤反射率光谱的模拟。  相似文献   

2.
田间原位可见-近红外光谱(VIS-NIR)能够有效的提高土壤属性的检测效率,但由于原位土壤中水分因素的影响,土壤属性的预测精度很难达到预期。如何有效去除土壤中的水分对土壤其他属性光谱预测的影响,是利用田间原位光谱高精度预测土壤属性所面临的难题,也是土壤光谱技术由室内转向田间的突破口。该问题的有效解决,可减除土壤样品的采集与室内预处理等过程,实现土壤属性的田间原位光谱测定。以新疆南部地区阿拉尔垦区十二团棉田为研究区,采用网格采样法共采集了116个0~20 cm深度的表层土壤样品,剔除1个异常值样品,得到115个有用样品,利用SR-3500型便携式地物光谱仪采集了231个样点的田间原位光谱数据,土样经风干、研磨和过筛等处理后测定其室内光谱和有机质含量。利用Kennard-Stone算法将115个土样分为69个转换子集及46个预测集,采用外部参数正交化法(EPO)、光谱直接转换法(DS)及光谱间接转换法(PDS)三种去除水分算法结合原位光谱反射率(R)、反射率一阶微分(R′)、反射率对数(LOG(R))以及反射率倒数(1/R)四种数学变换方式,运用随机森林(RF)模型进行不同组合模型的构建及精度评价。结果表明:(1)土壤有机质含量越高,土壤光谱反射率越低。土壤田间原位光谱反射率低于土壤室内光谱反射率;(2)室内光谱反射率与土壤有机质含量之间的相关性大于田间原位光谱,室内光谱经一阶微分变换后与土壤有机质含量之间的相关性显著提升。(3)土壤室内光谱反射率模型预测精度(R2=0.86, RPD=2.08, RMSE=1.55 g·kg-1, MAPE= 0.14)高于田间原位光谱反射率模型(R2=0.71, RPD=1.49, RMSE=2.17 g·kg-1, MAPE=0.20)。在去除水分算法模型中,以EPO一阶微分模型去除水分效果最好,决定系数R2由0.71提高到0.83,RPD由1.49提高到2.04,RMSE由2.17 g·kg-1降低至1.58 g·kg-1,MAPE由0.20降低至0.14。本研究实现了去除土壤水分因素的影响,提高了田间原位光谱预测土壤有机质的精度,为南疆棉田大尺度土壤有机质的预测及土壤肥力的评价提供了重要的参考。  相似文献   

3.
利用土壤的近红外光谱特征测定土壤含水量   总被引:4,自引:0,他引:4  
以新疆玛纳斯县不同质地土壤(砂壤土、粉粘壤土和粘土)室内光谱反射率作为研究对象,采用包络线去除法对土壤光谱曲线进行处理,与土壤含水量进行相关分析并建立模型。结果表明:不同质地土壤光谱反射率大小依次为:粘土>粉粘壤土>砂壤土;砂壤土、粉粘壤土和粘土分别以田间持水量20.01%,24.10%和30.43%为临界点,在低于该临界点范围内含水量与反射率呈反比,在高于该临界点范围内含水量与反射率呈正比;在1 390~1 623 nm波段内,土壤含水量与光谱归一化反射率有较好的负相关,并达到显著水平,所建立的土壤含水量预测模型R2值达到0.8以上,模型平均相对误差为10%。结果表明,建立不同质地土壤含水量光谱预测模型可以较准确反映土壤含水量,其快速、无损、准确的优点,为测定土壤含水量提供了一种新方法。  相似文献   

4.
高光谱遥感监测土壤含水量研究进展   总被引:12,自引:0,他引:12  
Wu DH  Fan WJ  Cui YK  Yan BY  Xu XR 《光谱学与光谱分析》2010,30(11):3067-3071
土壤含水量是监测旱情墒情的关键参量,近年来在利用高光谱遥感数据监测土壤含水量方面,国内外进行了大量的研究。文章首先在分析利用不同波段监测土壤含水量的原理及优缺点基础上,指出高光谱遥感监测的独特优势和问题。并以此为出发点,从机理上归纳了土壤含水量对土壤反射率的整体影响,以及对不同波段响应的差异。在此基础上,从物理机理和统计方法两个方面,总结了土壤含水量与土壤反射率的关系。并分析和评价了各模型及统计方法中的关键问题和优缺点。以往研究土壤含水量与土壤反射率关系的实验方法中往往存在一些问题,文章也一一指出并提出了解决方案。同时,探讨了高光谱在消除植被影响,更好地反演土壤含水量方面的可行性。最后对未来的研究方向进行了展望。  相似文献   

5.
基于高光谱成像技术的土壤水分机理研究及模型建立   总被引:1,自引:1,他引:0  
为了研究宁夏地区土壤的水分迁移机理以及对土壤水分快速无损检测,利用高光谱成像(光谱范围900~1 700 nm)技术对土壤的含水率进行了研究。通过高光谱成像系统采集了208个土样,比较了不同天数下土壤含水率与光谱的变化、不同质量含水量光谱的差异。对采集到的土样进行PLSR模型建立,对比分析不同光谱预处理方法、不同方法提取特征波长(UVE、CARS、β系数、SPA)、不同建模方法(MLR、PCR、PLSR)建立的模型,优选出最佳模型。结果表明:在一定的土壤含水量范围内,光谱曲线的反射率与土壤含水率成反比;当增大到超过田间持水率时,光谱曲线的反射率与土壤含水率成正比。对比分析了不同预处理方法,优选出单位向量归一化预处理方法。对比不同的模型,优选出SPA提取的特征波长的MLR模型。最优的特征波长为987,1 386,1 466,1 568,1 636,1 645 nm,最优模型的预测相关系数Rp=0.984,预测均方根误差RMSEP为0.631。因此,今后可采用不同波段对土壤含水率进行定量分析。  相似文献   

6.
土壤有机质是土壤肥力的重要体现,土壤水分是限制利用光谱技术进行土壤属性光谱监测的重要因子之一。为了研究土壤水分对土壤有机质光谱监测精度的影响和实现土壤有机质(soil organic matter, SOM)的准确、实时监测,对151份麦田土壤样品的土壤水分、土壤有机质和土壤光谱进行了测定。基于土壤含水量(soil water content, SWC)分类法和归一化土壤水分指数(normalized difference soil moisture index, NSMI)光谱参数分类法对麦田土壤样品进行分类,并对土壤含水量、土壤有机质和土壤光谱参数之间的关系进行研究。结果表明:以土壤含水量对土壤样品进行分类后,各分组之间的土壤有机质光谱监测精度各异,且都高于不分组条件下(5%~20%)土壤有机质光谱监测精度,表明土壤水分确实影响土壤有机质的光谱监测。土壤含水量低于10%和高于20%时,土壤水分对土壤有机质光谱监测精度的影响较小,表明此时的土壤水分状态易于土壤有机质的光谱监测。另一方面,以NSMI光谱参数对土壤样品进行分类后,各分组条件下的土壤有机质光谱监测的拟合精度优于基于土壤含水量的分类方法,通过R2,RMSE和RPD模型验证参数的验证,各模型可靠,表明利用NSMI光谱参数的分类方法,在一定程度上可以实现对土壤自然条件下土壤有机质的实时、准确监测。但是,所提到的两种土壤分类方法在本质上一样,说明仍然可能存在最优的土壤分类方法,来克服和消除土壤水分对土壤有机质光谱监测精度的影响。为土壤水分和土壤有机质的大面积遥感提供一定的理论基础。  相似文献   

7.
基于高光谱技术的土壤水分无损检测   总被引:2,自引:0,他引:2  
利用高光谱成像仪(光谱范围400~1 000 nm)对土壤含水率进行了无损检测。比较了208个土样不同天数下土壤含水率与光谱变化、不同质量含水量光谱的差异;对比分析了不同光谱预处理方法、不同方法提取特征波长、采用多元线性回归(multiple linear regression,MLR)、主成分回归(principal component regression,PCR)与偏最小二乘回归(partial least squares regression,PLSR)建模,优选出最佳模型。结果表明:光谱曲线的反射率随着土壤含水率的增加而减小。当超过田间持水率时,光谱曲线的反射率会随着土壤含水率的增加而增大。对比分析了不同预处理方法,近红外波段优选出单位向量归一化预处理方法。采用无信息变量消除法(UVE)、竞争自适应加权采样(CARS)、β系数法、连续投影算法(SPA)方法提取特征波长为49,30,5和7。为了减少数据冗余,对UVE与CARS提取的特征波长进一步采用SPA方法进行特征提取,UVE+SPA,CARS+SPA提取特征波长数分别为5和8个。在此基础上,利用MLR,PCR和PLSR方法对400~1 000 nm范围的特征波长建立模型,对比分析不同建模效果,优选出β系数提取的特征波长的MLR模型。最优的特征波长为411,440,622,713和790 nm,最优模型的预测相关系数Rp=0.979,预测均方根误差RMSEP为0.763。因此,今后可采用不同波段对土壤含水率进行定量分析。  相似文献   

8.
连续小波变换高光谱数据的土壤有机质含量反演模型构建   总被引:9,自引:0,他引:9  
土壤有机质含量是反映土壤肥力的重要指标,对其进行动态监测是实施精准农业的重要措施。近年来,众多学者尝试采用土壤近地传感(proximal soil sensing),尤其是近地高光谱技术,在田间和实验室获取不同形态土壤的高光谱数据,不断引入新方法建立适用于不同地域和不同土壤类型的有机质含量的反演模型。该研究在实验室内利用ASD FS3采集了土壤高光谱数据,采用“重铬酸钾-外加热法”测得了土壤有机质含量;分析了土壤原始光谱反射率(R)与有机质含量的相关性,选取R2>0.15的敏感波段的反射率;利用CWT对土壤原始光谱反射率(R)、光谱反射率的连续统去除(CR)进行不同尺度的分解,分析小波系数与土壤有机质含量的相关性,选取R2>0.3的敏感波段的小波系数;利用R选取的波段信息和R-CWT,CR-CWT的选取的小波系数,分别建立偏最小二乘回归(PLSR)、BP神经网络(BPNN)、支持向量机回归(SVMR)三种不同的土壤有机质含量反演模型。结果表明:相比R与土壤有机质含量的决定系数R2,R-CWT,CR-CWT变换后得到的小波系数与土壤有机质含量的决定系数R2分别提高了0.15和0.2左右;CR-CWT-SVMR的模型效果最为显著,预测集的R2和RMSE分别为0.83,4.02,RPD值为2.48,具有较高的估测精度,能够全面稳定地估算土壤有机质含量;CR-CWT-PLSR的模型精度与CR-CWT-BPNN,CR-CWT-SVMR相比虽有一定差距,但是其计算量要明显小于非线性的BPNN和SVMR方法,具有模型简单、运算速度快等特点,对开发与设计田间传感器具有较大的应用价值。  相似文献   

9.
基于反射率模拟模型的黑土有机质含量估测   总被引:8,自引:0,他引:8  
定量分析了黑龙江省黑土室内高光谱反射率曲线特征,确定了影响反射光谱曲线的主要特征控制点,建立了黑土光谱反射率模拟模型并对其进行评价,分析比较反射率数据、模拟后的光谱数据与土壤有机质含量的关系,建立了土壤有机质含量光谱预测模型。结果如下:有机质是小于1 000 nm范围黑土反射光谱特征的决定因素,随有机质含量变化,黑土光谱反射率在该范围呈现单/双吸收谷特征;黑土反射光谱曲线在450~930 nm范围内有5个主要特征控制点;黑土反射率模拟模型能较准确地描述黑土反射光谱曲线,直线模型的模拟效果更好;以反射率模拟模型系数为自变量的有机质含量预测模型优于基于反射率及其一阶微分的模型,说明反射率模拟模型的曲线控制点选择合理且有代表性,反射率曲线模拟方法能够准确描述黑土的实际光谱反射率。  相似文献   

10.
近年来光谱技术以其经济、高效的优势在土壤盐渍化监测研究中得到重视,但是由于土壤水分对反射光谱影响很大,土壤湿润条件下监测精度难以满足农业生产需求。通过对盐土土柱室内模拟蒸发过程中的反射光谱和水分、盐分变化的连续监测,利用多元逐步回归方法,建立了1 370~1 610 nm光谱对称度与土壤表层含盐量、含水量之间的线性关系模型,r为0.863;用该模型反演表层土壤含盐量,实测值与预测值之间线性关系的r为0.656(n=54),RMSE为2.059 g·kg-1。利用光谱对称度可以实现土壤湿润条件下土壤盐分含量预测。  相似文献   

11.
我国尾矿库数量众多,分布广泛,在低含水量条件下,风力作用引起的尾砂扬尘会对周边环境造成污染。而尾矿库表面积大,含水量变化快,传统的含水量监测方法效率低、安全性差、成本高,难以实现尾矿库含水量的大面积、实时、快速的监测。目前,基于光谱特征的遥感模型虽可以较为准确地预测土壤含水量,但矿区尾砂与常规土壤在成分上存在差异性,使得土壤含水量的光谱预测遥感模型可能无法适用于尾矿库含水量的预测。为此,选择辽宁省风水沟尾矿库作为研究区,采集尾砂配置成不同含水量的样品,测试其可见光-近红外光谱,分析不同含水量样品的光谱特征以及含水量与光谱特征之间的关系,建立针对尾砂的含水量遥感预测模型,并应用于辽宁省风水沟尾矿库表面含水量的预测。结果表明:(1)含水量对尾砂的光谱特征有显著影响,二者存在高度的相关性,光谱反射率随含水量增加而下降,且波长越长,含水量对光谱的影响越显著;(2)构建了基于尾砂光谱特征的含水量遥感预测模型,选择Landsat8-OLI传感器的B6和B7波段,定义了比值指数(RTI)、归一化差异指数(NDTI)和差值指数(DTI)3种尾砂光谱指数,并将这3种指数作为输入自变量,使用随机森林方法进行训练以及含水量的建模预测,并与B7波段建立的对数反射率预测模型进行比较。结果表明,光谱指数+随机森林的预测模型效果优于基于B7波段建立的对数反射率模型。(3)使用光谱指数+随机森林的预测模型,通过Landsat8-OLI数据对实地尾矿库提取了含水量的空间分布图,结果表明模型预测的含水量与实测结果之间的决定系数R2达0.798,均方根误差RMSE为0.077,相对分析误差RPD为1.970,平均相对精度ARE为20.1%,在现有技术条件下,达到了较好的预测效果。该研究为变质型铁矿尾矿库含水量的预测提供一种大面积、实时、快速的实用方法。  相似文献   

12.
去除土壤水分对高光谱估算土壤有机质含量的影响   总被引:2,自引:0,他引:2  
土壤高光谱技术具有方便快捷、无破坏、成本低等优点,已被广泛应用于估算土壤有机质含量(SOMC)。然而,野外测量的土壤高光谱数据因受外部环境因素(土壤湿度、温度、表面粗糙度等)干扰,导致SOMC估算模型适用性有待提升。土壤含水率(SMC)是影响野外测量高光谱的最主要的障碍因素之一,它的变化严重影响可见-近红外(Vis-NIR)光谱反射率的观测结果。因此,消除SMC对高光谱数据的干扰是提高土壤高光谱估算SOMC模型预测精度的关键环节。以江汉平原潜江市潮土样本为研究对象,在室内人工加湿土样,分别获取6个SMC水平的土壤高光谱数据,采用标准正态变换(SNV)对光谱数据进行预处理,基于外部参数正交化法(EPO)去除土壤水分对高光谱的影响,利用偏最小二乘方法(PLSR)建立并对比EPO处理前、后不同SMC水平SOMC反演模型。结果表明,土壤水分对Vis-NIR光谱反射率有显著的影响,掩盖了SOMC的光谱吸收特征;EPO处理前不同SMC水平的光谱曲线之间的差异较为明显,而EPO处理后的各SMC水平的光谱曲线形态基本相似;采用EPO处理后的土壤高光谱数据建立SOMC估算模型,预测集的R2p,RPD分别为0.84和2.50,其精度与EPO处理前所建模型相比有较大提升,表明EPO算法可以有效去除土壤水分的影响,从而提升SOMC的估算精度。对定向去除外部环境参数对土壤高光谱影响进行了实证,为完善野外原位获取SOMC信息技术提供理论基础。  相似文献   

13.
基于无人机多光谱图像的土壤水分检测方法研究   总被引:1,自引:0,他引:1  
以表层土壤为对象,探究土壤的多光谱反射率与土壤水分含量相关性,进行基于无人机多光谱图像的土壤水分含量预测模型方法的探究。选取中国农业大学通州实验站为研究区域,实地采集试验田的土壤样本100组,按照一定梯度配制土壤含水量,配成的土壤含水率为10%~50%之间,土壤含量的真实值采用土壤烘干法进行测定。多光谱相机灵巧便捷,可搭载在无人机上对土壤进行监测。将RedEdged-M型多光谱相机搭载在Phantom 3型无人机上,选择阳光充足的采集环境,实时采集土壤样本的多光谱图像,建立土壤多光谱信息与水分含量之间的模型。利用处理光谱数据的ENVI5.3软件提取土壤样本多光谱信息,以多光谱相机自带的标准白板反射率为100%,计算出土壤样本在蓝、绿、红、红边、近红外五个波段的光谱反射率。采用BP神经网络算法、支持向量机算法、偏最小二乘算法分别建立基于无人机多光谱图像的土壤水分含量的预测模型。以80组土壤样本数据作为训练集,建立基于多光谱图像的土壤水分含量预测模型。采用莱文贝格-马夸特算法对BPNN进行改进,提高了其训练速度,当网络结构为5-10-1时,训练效果最好,本文选择该网络结构;SVM采取高斯核函数,当参数为0.56时,模型效果最好。本研究采用归一化均方根误差(NRMSE)和决策系数(R 2)对三种土壤水分含量的预测模型进行定量对比。以20组土壤样本数据作为测试集,结果可知,基于BP神经网络土壤水分含量预测模型的NRMSE为0.268,R 2为0.872;基于支持向量机的土壤水分含量预测模型的NRMSE为0.298,R 2为0.821;基于偏最小二乘土壤水分含量预测模型的NRMSE为0.316,R 2为0.789。对三种模型分析可知,基于BPNN的土壤水分含量预测模型效果均较好。结果可知,土壤的光谱反射率与含水率间存在较密切的相关性,将多光谱相机搭载在无人机上可以对土壤水分含量进行有效的实时监测,对监测土壤墒情提供技术支持和理论支撑。  相似文献   

14.
为研究煤矸石充填复垦土壤重金属含量快速有效的监测方法,以淮南创大生态园煤矸石充填复垦田间试验小区为研究区域,首先采用化学方法监测土壤(0~20 cm)重金属(Cu, Cr, As)含量,然后采用ASD(analytical spectral devices) FiSpec4型高光谱仪测量土壤样品的反射光谱,提取光谱特征,并对光谱进行一阶微分变换、二阶微分变换及倒数对数变换;将变换后的各光谱特征参数与监测的土壤重金属含量进行相关性分析,并依据相关性分析结果选择显著相关的波段作为相关因子供建模使用。采用多元逐步回归(stepwise multiple liner regression,SMLR)分析、偏最小二乘回归(partial least squares regression, PLSR)及人工神经网络(artificial neural network, ANN)三种方法分别建立基于光谱反射率估算土壤重金属含量的预测模型,并采用回归模型进行精度评定,然后确定各重金属含量的最佳预测模型。实验结果表明,经过微分变换的光谱波段与土壤重金属含量达到了显著相关;重金属Cu和Cr的一阶微分光谱的人工神经网络模型为最佳预测模型,重金属元素As的二阶微分光谱的偏最小二乘回归模型为最佳预测模型。  相似文献   

15.
通过在350~2 500 nm波段范围内对不同水分含量的土壤进行偏振光谱测试与分析,确定土壤偏振光谱数据与水分含量之间的关系,研究土壤水分含量对偏振光谱的响应与变化,并确定最佳土壤含水量偏振光谱预测模型。结果表明,微分偏振光谱模型的精度要高于偏振光谱模型和吸光度模型,且模型均呈现拐点含水量,发现不同偏振状态下的拐点含水量均在30%附近,具有一定的规律性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号