首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Current Applied Physics》2018,18(12):1571-1576
Recent study shows that the main reason for limiting CZTS device performance lies in the low open circuit voltage, and crucial factor that could affect the Voc is secondary phases like ZnS existing in absorber layer and its interfaces. In this work, the Cu2ZnSnS4 thin film solar cells were prepared by sputtering CuSn and CuZn alloy targets. Through tuning the Zn/Sn ratios of the CZTS thin films, the crystal structure, morphology, chemical composition and phase purity of CZTS thin films were characterized by X-Ray Diffraction (XRD), scanning electron microscopy (SEM) equipped with an energy dispersive spectrometer (EDS) and Raman spectroscopy. The statistics data show that the CZTS solar cell with a ratio of Zn/Sn = 1.2 have the best power convention efficiency of 5.07%. After HCl etching process, the CZTS thin film solar cell with the highest efficiency 5.41% was obtained, which demonstrated that CZTS film solar cells with high efficiency could be developed by sputtering CuSn and CuZn alloy targets.  相似文献   

2.
The formation of stable, low resistance and nonrectifying contacts to Cu2ZnSnS4 (CZTS) thin film photovoltaic material are the major and critical challenges associated with its effect over the output performance of fabricated solar cells. The solution of continuity equation in one dimension for a soda lime glass substrates (SLG) |Mo | CZTS | CdS | ZnO:Al cell structure is considered in the simulation of its current–voltage characteristics that is governed by the back contact material, acceptor concentration as well as thickness of the CZTS layer. Our primary simulation shows a 6.44% efficiency of the CZTS solar cell which is comparable to reported experimental data if these parameters are not optimized. However, by optimizing them a simulated conversion efficiency as high as 13.41% (Voc=1.002 V, Jsc=19.31 mA/cm2, fill factor (FF)=69.35%) could be achievable. The solar cell with a back contact metal work function of 5.5 eV, an absorber layer's thickness of 2.68 μm and an acceptor concentration of 5×1016 cm−3 were optimum. The presented optimization is ideal and subject to experimental verification with a precise control of the process parameters along with reduced surface as well as bulk recombination, secondary phases and thermalization losses.  相似文献   

3.
We propose a triple junction CBTSSe/CZTS/ACZTSe solar cell using earth abundant and non‐toxic CBTSSe, CZTS, and ACZTSe as the primary absorbing layers for top, middle, and bottom cells, respectively. Using rigorous optoelectronic simulation, we analyze the performance of the proposed cell and vary absorber thicknesses in order to maximize its efficiency. The maximum obtainable efficiency is calculated to be 36.04% with 2.73 V open circuit voltage, 17.88 mA cm?2 short circuit current density, and 73.7% fill factor including Shockley–Read–Hall, surface and radiative recombination mechanisms. The maximum achievable efficiency can be obtained from an optimized device structure with 250, 300, and 1000 nm thicknesses of CBTSSe, CZTS, and ACZTSe, respectively. The design and analyses presented in this work would help in achieving highly efficient eco‐friendly inorganic solar cells.  相似文献   

4.
《Current Applied Physics》2019,19(10):1111-1119
Thin film solar cells based on Cu2ZnSnS4 (CZTS) absorber material suffers from performance issues arising due to the presence of a non-optimal back contact barrier, low carrier lifetime, acceptor/donor point defects in bulk, interface defects at the absorber-buffer junction and grain boundaries within the absorber. We perform comprehensive simulations enumerating the impact of these performance limiting factors on CZTS solar cells. These simulations capture the experimentally observed anomalies in current-voltage (I–V) characteristics and the open-circuit voltage (VOC) pinning in CZTS solar cells. These cause-effect relationships as elaborated in the findings are expected to be of great interest to the experimentalists working in this field.  相似文献   

5.
许佳雄  姚若河 《物理学报》2012,61(18):187304-187304
具有高光吸收系数的半导体Cu2ZnSnS4 (CZTS)薄膜是一种新型太阳能电池材料. 本文对n-ZnO:Al/i-ZnO/n-CdS/p-CZTS结构的CZTS薄膜太阳能电池进行分析, 讨论CZTS薄膜的掺杂浓度、厚度、缺陷态和CdS薄膜的掺杂浓度、 厚度对太阳能电池转换效率的影响以及太阳能电池的温度特性. 分析表明, CZTS薄膜作为太阳能电池的主要光吸收层, CZTS薄膜的掺杂浓度和厚度的取值对太阳能电池的转换效率有显著影响, CZTS薄膜结构缺陷态的存在会导致太阳能电池性能的下降. CdS缓冲层的掺杂浓度、厚度对太阳能电池光伏特性的影响较小. 经结构参数优化得到的n-ZnO:Al/i-ZnO/n-CdS/p-CZTS薄膜太阳能电池的最佳光 伏特性为开路电压1.127 V、短路电流密度27.39 mA/cm2、填充因子87.5%、 转换效率27.02%,转换效率温度系数为-0.14%/K.  相似文献   

6.
Cu2ZnSnS4 (CZTS) has attracted intensive interest for application in photovoltaic technology due to its excellent semiconductor properties. We report a nanostructured CZTS solar cell which was fabricated by infiltrating of CZTS nanoparticles into CdS coated ZnO nanorod arrays. The well aligned ZnO nanorods facilitate the efficient infiltration of CZTS nanoparticles. A hole transport layer was deposited to facilitate the transport of holes. The nanostructured CZTS solar cell demonstrated a remarkably high short‐circuit current density (11.0 mA/cm2). As a result, a power conversion efficiency of 2.8% was obtained. (© 2014 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

7.
Cu2ZnSnS4 (CZTS) and its related materials such as Cu2ZnSnSe4 (CZTSe) and Cu2ZnSn(S,Se)4 (CZTSSe) have attracted considerable attention as an absorber material for thin film solar cells due to the non‐toxicity, elemental abundance, and large production capacity of their constituents. Despite the similarities between CZTS‐based materials and Cu(In,Ga)Se2(CIGS), the record efficiency of CZTS‐based solar cells remains significantly lower than that of CIGS solar cells. Considering that the difference between the two lies in the choice of the absorber material, the cause of the lower efficiency of CZTS‐based solar cells can be isolated to the issues associated with CZTS‐based materials and their related interfaces. Herein, these issues and the work done to understand and resolve them is reviewed. Unlike existing review papers, every unique region of CZTS‐based solar cells that contributes to its lower efficiency, namely: (1) the bulk of the absorber, (2) the grain boundaries of the absorber, (3) the absorber/buffer layer interface, and (4) the absorber/back contact interface are surveyed. This review also intends to identify the major unresolved issues and the potential improvement approaches of realizing sizable improvements in the solar cells' efficiency, thus providing a guide as to where research efforts should be focused. (© 2014 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

8.
The effects of an ultrathin ZnO intermediate layer deposited at the CZTS/Mo interface on CZTS solar cell performance have been investigated in this work. The ZnO layer inhibits the generation of MoS2 layer and the formation of voids in the CZTS absorber. Consequently, the incorporation of this layer reduces the series resistance and increases the shunt resistance, which boosts photovoltaic conversion efficiency from 1.13% to 4.3%. (© 2014 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

9.
贾晓洁  艾斌  许欣翔  杨江海  邓幼俊  沈辉 《物理学报》2014,63(6):68801-068801
利用PC2D二维模拟软件对选择性发射极晶体硅太阳电池(SE电池)进行了器件模拟和参数优化的研究.在对丝网印刷磷浆法制备的SE电池的实测典型电流-电压曲线实现完美拟合的基础上,全面系统地研究了栅线、基区、选择性发射区和背表面场层等的参数对电池性能的影响.模拟表明:基区少子寿命、前表面复合速度和背表面复合速度是对电池效率影响幅度最大的三个参数.在所研究的参数范围内,当基区少子寿命从50μs上升到600μs时,电池效率从18.53%上升到19.27%.低的前表面复合速度是使发射区方块电阻配比优化有意义的前提.要取得理想的电池效率,背表面复合速度需控制在500 cm/s以下.此外,对于不同的前表面复合速度,电池效率的最大值总是在50—90Ω/□的重掺区方阻、110—180Ω/□的轻掺区方阻的范围内取得.对不同的栅线数目,重掺区宽度与栅线间距之比为32%时,电池的效率最高.另外,在主栅结构保持较低面积比率的前提下,主栅数目的增加也可提高效率.最后,通过优化p型SE电池的效率可达到20.45%.  相似文献   

10.
在柔性钼箔衬底上采用连续离子层吸附反应法(successive ionic layer absorption and reaction)制备ZnS/Cu2SnSx叠层结构的预制层薄膜,预制层薄膜在蒸发硫气氛、550 C温度条件下进行退火得到Cu2ZnSnS4吸收层.分别采用EDS,XRD,Raman,SEM表征吸收层薄膜的成分、物相和表面形貌.结果表明,退火后薄膜结晶质量良好,表面形貌致密.用在普通钠钙玻璃上采用相同工艺制备的CZTS薄膜表征薄膜的光学和电学性能,表明退火后薄膜带隙宽度为1.49 eV,在可见光区光吸收系数大于104cm 1,载流子浓度与电阻率均满足薄膜太阳电池器件对吸收层的要求.用上述柔性衬底上的吸收层制备Mo foil/CZTS/CdS/i-ZnO/ZnO:Al/Ag结构的薄膜太阳电池得到2.42%的效率,是目前报道柔性CZTS太阳电池最高效率.  相似文献   

11.
We report on the interaction between intentional potassium doping of thin film Cu(In,Ga)Se2 (CIGS) solar cells, CIGS absorber composition, and device efficiency. Up to now high efficiency CIGS solar cells could not be produced with a gallium/(gallium + indium) ratio higher than 35%. The new doping process step does not only increase solar cell conversion efficiencies up to 20.8%, but also allows a shift in the CIGS absorber composition towards higher gallium content whilst maintaining this high efficiencies level. We find that the saturation of the open circuit voltages for higher gallium content that is normally observed can partially be overcome by the new doping procedure. This observation leads us to the conclusion that even on this high performance level CIGS solar cells still hold a potential for further development beyond the record values reported here. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
The Cu_2ZnSnS_4(CZTS)-based solar cell is numerically simulated by a one-dimensional solar cell simulation software analysis of microelectronic and photonic structures(AMPS-ID).The device structure used in the simulation is Al/ZnO:Al/nZn(O,S)/pCZTS/Mo.The primary motivation of this simulation work is to optimize the composition in the ZnO_(1-x)S_x buffer layer,which would yield higher conversion efRciency.By varying S/(S+0) ratio x,the conduction band offset(CBO) at CZTS/Zn(0,S) interface can range from-0.23 eV to 1.06 eV if the full range of the ratio is considered.The optimal CBO of 0.23 eV can be achieved when the ZnO_(1-x)S_x buffer has an S/(S+0) ratio of 0.6.The solar cell efRciency Rrst increases with increasing sulfur content and then decreases abruptly for x 0.6,which reaches the highest value of 17.55%by our proposed optimal sulfur content x = 0.6.Our results provide guidance in dealing with the ZnO_(1-x)S_x buffer layer deposition for high efficiency CZTS solar cells.  相似文献   

13.
The numerical investigation on a solar cell based on SnS was carried out in this paper utilizing SCAPS-1D simulation software. The originality of this work lies in the top efficiency reached after adding a BSF of the same type of absorber layer. Studied photovoltaic solar cell is wrought of a SnS layer, one layer of cadmium sulfide CdS, and ITO as a TCO layer. To achieve optimal performance, the impact of layer thicknesses, carrier concentration, series and shunt resistance, operating temperature, and the impact of the SnS P+ layer as a back surface field on solar cell performance were examined. With the insertion of the BSF in the proposed cell, the open-circuit tension improved from 820 to 930 mV, the Jsc current density slightly increased from 34.75 to 35.09 mA/cm2, the FF Fill Factor increased by even more than 87%, and a top efficiency of 28.47% was reached so rather than 23.94%.  相似文献   

14.
Cu2ZnSnS4 (CZTS) has an optical band gap of 1.4–1.5 eV, which is similar to that of Cu(In,Ga)Se2 (CIGS), and a high absorption coefficient (>104 cm−1) in the visible light region. In previous reports, CIGS thin-film solar cells have been shown to improve the performance of the device since the secondary phase is removed by Potassium cyanide (KCN) etching treatment. Therefore, in this study we applied a KCN etching treatment on CZTS and measured the effects. We confirmed the removal of Cu2−xS via Kelvin probe force microscopy (KPFM) and Raman scattering spectroscopy. The effects of the experiment indicate that we can define with precision the location of the secondary phases, and therefore the control of the secondary phases will be easier and more efficient. Such capabilities could improve the solar cell performance of CZTS thin-films.  相似文献   

15.
《Current Applied Physics》2020,20(8):925-930
The well-known quaternary Cu2ZnSnS4 (CZTS) chalcogenide thin films are playing an important role in modern technology. The CZTS nanocrystal were successfully prepared by solution method using water, ethylene glycol and ethylenediamine as different solvent. The pure phase material was used for thin film coating by thermal evaporation method. The prepared CZTS thin films were characterized by XRD, Raman spectroscopy, FESEM, XPS and FT-IR spectroscopy. The XRD and Raman spectroscopy analysis revealed the formation of polycrystalline CZTS thin film with tetragonal crystal structure after annealing at 450 °C. The oxidation state of the annealed film was studied by XPS. A direct band gap about 1.36 eV was estimated for the film from FT-IR studies, which is nearly close to the optimum value of band gap energy of CZTS materials for best solar cell efficiency. The CZTS annealed thin films are more suitable for using as a p-type absorber layer in a low-cost solar cell.  相似文献   

16.
This letter reports on the performance improvement of an epitaxially grown SiGe on Si solar cell by optimizing the back surface field (BSF). First, a Si0.18Ge0.82 on silicon (Si) solar cell was fabricated with a 0.25 μm BSF layer. A 25 mV open‐circuit voltage (VOC) improvement was observed on this BSF solar cell compared with the reference solar cell without BSF layer. Then, a Si0.18Ge0.82 on Si solar cell with double BSF layers was designed and fabricated. The measured efficiency of this solar cell is 3.4% when filtered by a GaAs0.79P0.21 top cell. To the best of the authors' knowledge, the 3.4% efficiency reported here is the highest efficiency for SiGe on Si solar cells when filtered by a GaAs0.79P0.21 top cell. The previous best reported efficiency for high Ge composition SiGe on Si solar cell was only 1.7% when filtered by a GaAs0.79P0.21 top cell.  相似文献   

17.
采用衬底加热溅射铜锌锡硫(CZTS)四元化合物单靶制备CZTS薄膜,并研究原位退火对制备薄膜的影响.结果表明:在溅射结束后快速升温并保持一段时间,所得到的样品相比于未原位退火的CZTS薄膜结晶质量更好,且表面更平整致密;原位退火后的CZTS薄膜太阳电池性能参数也相应地有所提升,其开路电压(V_(OC))为575 mV,短路电流密度(J_(SC))为8.32 mA/cm~2,光电转换效率达到1.82%.  相似文献   

18.
To investigate the effect of carrier concentration gradient on Cu2ZnSnS4 (CZTS) thin-film solar cells, the properties of CZTS solar cells were studied by numerical method. The photovoltaic performances of carrier concentration gradient CZTS solar cells were calculated by the solutions of Poisson's equation, continuity equation, and current density equation using AFors-Het v2.4 program. The carrier concentration gradient was changed to analyze its effect. Compared with CZTS solar cells without carrier concentration gradient, the photovoltaic performances of CZTS solar cells can be enhanced by using carrier concentration gradient absorber. The carrier concentration gradient can extend the distribution region of built-in electric field, which is beneficial to the drift of photo-generated carriers. However, the carrier concentration gradient also affects the recombination and series resistances of solar cells. When the defect density of CZTS layer is high, the photo-generated carriers are affected significantly by recombination, resulting in slight effect of carrier concentration gradient. Therefore, the defect density should be reduced to enhance the effect of carrier concentration gradient on improving conversion efficiency of CZTS thin-film solar cells.  相似文献   

19.
《Current Applied Physics》2020,20(7):899-903
An advanced approach to minimize the light loss was discussed for III-V solar cells, by controlling the roughnesses of the device surface. Adhesives with different viscosities were applied to bond the III-V solar cells with the supporting substrate before the epitaxial lift-off process. The surface roughness of the III-V solar cells with epoxy adhesive (Rrms = 15.4 nm) is one order of magnitude higher than that with acrylic adhesive (Rrms = 1.6 nm), due to the differences in viscosity, resulting from the spreadability while being hardened. This roughness has increased the reflectance in the wavelength between 650 and 900 nm, implying that this reflectance is influenced by the rear surface of the solar cell. The device performance of the double-junction solar cells (Ga0.5In0.5P- and GaAs- based) also reflects the effect of the reflectance. The solar cell with the epoxy adhesive exhibited ~2% increase of the conversion efficiency than that with the acrylic adhesive, mainly due to the increased current density. The integrated current density from the external quantum efficiency (EQE) also exhibited ~2% increase only in the bottom (GaAs-based) cell, corresponding to the higher reflectance for red and near-infrared wavelength ranges.  相似文献   

20.
In order to improve photovoltaic performance of solar cells based on ZnTe thin films two device structures have been proposed and its photovoltaic parameters have been numerically simulated using Solar Cell Capacitance Simulator software. The first one is the ZnO/CdS/ZnTe conventional structure and the second one is the ZnO/CdS/ZnTe/P+-ZnTe structure with a P+-ZnTe layer inserted at the back surface of ZnTe active layer to produce a back surface field effect which could reduce back carrier recombination and thus increase the photovoltaic conversion efficiency of cells. The effect of ZnO, CdS and ZnTe layer thicknesses and the P+-ZnTe added layer and its thickness have been optimized for producing maximum working parameters such as: open-circuit voltage Voc, short-circuit current density Jsc, fill factor FF, photovoltaic conversion efficiency η. The solar cell with ZnTe/P+-ZnTe junction showed remarkably higher conversion efficiency over the conventional solar cell based on ZnTe layer and the conversion efficiency of the ZnO/CdS/ZnTe/P+-ZnTe solar cell was found to be dependent on ZnTe and P+-ZnTe layer thicknesses. The optimization of ZnTe, CdS and ZnTe layers and the inserting of P+-ZnTe back surface layer results in an enhancement of the energy conversion efficiency since its maximum has increased from 10% for ZnO, CdS and ZnTe layer thicknesses of 0.05, 0.08 and 2 µm, respectively to 13.37% when ZnO, CdS, ZnTe and P+-ZnTe layer thicknesses are closed to 0.03, 0.03, 0.5 and 0.1 µm, respectively. Furthermore, the highest calculated output parameters have been Jsc?=?9.35 mA/cm2, Voc?=?1.81 V, η?=?13.37% and FF?=?79.05% achieved with ZnO, CdS, ZnTe, and P+-ZnTe layer thicknesses about 0.03, 0.03, 0.5 and 0.1 µm, respectively. Finally, the spectral response in the long-wavelength region for ZnO/CdS/ZnTe solar cells has decreased at the increase of back surface recombination velocity. However, it has exhibited a red shift and showed no dependence of back surface recombination velocity for ZnO/CdS/ZnTe/P?+?-ZnTe solar cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号