首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Phase transformations in [111]- and [001]-oriented PbMg1/3Nb2/3O3–29PbTiO3 single crystals have been studied using dielectric and optical measurements before and after applying an electric field. It is shown that the subsequence of phase transitions rhombohedral (R)—tetragonal (T)—cubic (C) phases is observed in nonpolarized samples of both orientations as temperature increases. In the [111]-oriented crystal, an additional intermediate monoclinic phase (it is possible, M a ) is induced after preliminary polarization at room temperature and the RM a TC phase transitions are observed on heating. In the [001]-oriented crystal, after its polarization, the monoclinic phase forms instead of the rhombohedral phase even at room temperature and the M a TC transitions occur on heating. The results are discussed from the point of view of the existence polar nanoregions with different local symmetries in a glasslike matrix.  相似文献   

2.
A simple and sensitive electrochemical immune bioassay for the detection of hepatitis B surface antigen (HBsAg), as a model, was developed based on [Fe(CN)6]4-/3- and [AuCl4]- ions-derivated biomimetic interface in this study. A layer of [Fe(CN)6]4-/3- film (i.e., Prussian blue, PB) was initially electrodeposited onto a glassy carbon electrode, and then [AuCl4]- ions were reduced under the potentiostat to form gold nanoparticles on the PB film. Finally, hepatitis B surface antibody (HBsAb) was adsorbed onto the nanogold surface. The performance and factors influencing the immunosensor were assessed and optimized. The proposed immunosensor exhibits a specific response to HBsAg in the range of 2.13–314.3 ng∙ml-1 with a detection limit of 0.42 ng∙ml-1. In addition, the developed immunosensor shows high sensitivity, good reproducibility, and long-term stability. Importantly, the ions-derivated biomimetic interface could be further extended for the immobilization of other proteins and biocompound.  相似文献   

3.
Organic–inorganic hybrid sample [N(C4H9)4]2Cu2Cl6 was prepared via the reaction between copper chloride and tetrabutylammonium chloride. The compound was characterized by X-ray powder diffraction, IR, Raman, differential scanning calorimetry (DSC), DTA-TGA analysis and electrical impedance spectroscopy. DSC studies indicate a presence of one-phase transition at 343 K. The complex impedance of compound [N(C4H9)4]2Cu2Cl6 have been investigated in temperature and frequency ranges 300–380 K and 200 Hz–5 MHz, respectively. The Z′ and Z″ versus frequency plots are well fitted to an equivalent circuit model. The circuits consist of the parallel combination of bulk resistance R p and constant phase elements CPE. The frequency dependence of the conductivity is interpreted in term of Jonscher's law: s(w) = sdc + Awn \sigma (\omega ){ } = {\sigma_{\rm{dc}}} + { }A{\omega^n} . The conductivity follows the Arrhenius relation. The variation of the value of these elements with temperatures confirmed the availability of the phase transition at 343 K detected by DSC and electrical measurements.  相似文献   

4.
A series of zinc phosphate glass doped with cobalt Na2Zn(1???x)CoxP2O7 (x = 0, 1, 2 and 5 mol%) was synthesized. These glasses were characterized by both infrared and large broadband dielectric spectroscopy. Infrared spectra indicate the increase of Zn/Co ratio creates defect in phosphate network due to the depolymeration of phosphate anions. The dc conductivity increases and activation energy decreases with the amount of cobalt ions in the glass network. The impedance measurements reveal that the total conductivity follows Jonscher’s power law. The dielectric constant and dielectric loss increased with the temperature and decreased with the frequency whatever the cobalt proportion.  相似文献   

5.
Bismuth Zinc niobate (Bi1.5Zn1.0Nb1.5O7) thin films were deposited by pulsed laser deposition (PLD) method on fused silica substrates at different oxygen pressures. The structural, microwave dielectric and optical properties of these thin films were systematically studied for both the as-deposited and the annealed films at 600°C. The as-deposited films were all amorphous in nature but crystallized on annealing at 600°C in air. The surface morphology as studied by atomic force microscopy (AFM) reveals ultra-fine grains in the case of as-deposited thin films and cluster grain morphology on annealing. The as-deposited films exhibit refractive index in the range of 2.36–2.53 (at a wavelength of 750 nm) with an optical absorption edge value of 3.30–3.52 eV and a maximum dielectric constant of 11 at 12.15 GHz. On annealing the films at 600°C they crystallize to the cubic pyrochlore structure accompanied by an increase in band gap, refractive index and microwave dielectric constant.  相似文献   

6.
The effect induced by the presence of a polaron related relaxation process on the dielectric properties of a ferroelectric KTa1?x Nb x O3 (KTN) crystal was investigated (10-2?106 Hz, at 300?375 K) using broadband dielectric spectroscopy. Characterization of the process using just the standard frequency domain dielectric parameters can nonetheless provide penetrating insight into its nature and origins. The three parameters, namely: relaxation time (τ), Cole-Cole loss broadening (α), and dielectric strength (Δ?) provide each one in its own way, much useful and often overlooked information. The Activation Energy along with the Meyer-Neldel dependance, both extracted from τ serve to illuminate the dynamic properties. At the same time, α and especially the combined α(lnτ) relationship, expose the fractal structure of the underlying landscape. Finally, the static parameter Δ?, enables quantification of the dipolar correlations. Hydrostatic pressure (up to 7.5 kbar) was applied to gently perturb the system and observe the outcome on all of the various parameters. This additional degree of freedom allows for a much more comprehensive exploration of the phase space behavior of the system.  相似文献   

7.
8.
Annealing in vacuum is found to affect magnetic order in polycrystalline Cu1?xZnxCr2Se4 samples (x=0.88, 0.90). Samples subjected to heat treatment exhibit a temperature dependence of dynamic magnetic susceptibility characteristic of a non-single-phase magnetic state. The annealing-induced magnetic order is assigned to the zinc off-stoichiometry formed in the process.  相似文献   

9.
Electrical conductivity and dielectric relaxation studies on SO4 2? doped modified molybdo-phosphate glasses have been carried out over a wide range of composition, temperature and frequency. The d.c. conductivities which have been measured by both digital electrometer (four-probe method) and impedance analyser are comparable. The relaxation phenomenon has been rationalized using electrical modulus formalism. The use of modulus representation in dielectric relaxation studies has inherent advantages viz., experimental errors arising from the contributions of electrode-electrolyte interface capacitances are minimized. The relaxation observed in the present study is non-Debye type. The activation energies for relaxation were determined using imaginary parts of electrical modulus peaks which were close to those of the d.c. conductivity implying the involvement of similar energy barriers in both the processes. The enhanced conductivity in these glasses can be attributed to the migration of Na+, in expanded structures due to the introduction of SO4 2? ions.  相似文献   

10.
The Raman spectra of Zn2 ? 2x CuxInxSe2 (ZCIS) semiconductor films designed for use as optically active layers in thin-film solar cells have been investigated. The Raman spectra of ZCIS films are characterized by the presence of the dominant mode A 1, which is observed in AIBIIIC 2 VI compounds with chalcopyrite structure. The spectra of CuInSe2 films (x = 1) obtained at low temperatures (T ≤ 400°C) contain and additional mode at 258 cm?1, which is due to the presence of the impurity CuxSe phase. All modes observed in the spectra of ZCIS films with a Zn concentration ≤20 at % obtained under optimal conditions (520–540°C) correspond to the symmetry of vibrations in the chalcopyrite structure. The broadening and blue shift of the A 1 mode occurring with an increase in the Zn concentration are indicative of degradation of the chalcopyrite crystal structure and the chalcopyrite → sphalerite phase transition at Zn concentrations exceeding 20 at %.  相似文献   

11.
A new polyanionic cathode material, Li3V2(PO4)3·LiMn0.33Fe0.67PO4/C for lithium-ion batteries, was synthesized using a sol-gel method and with N,N-dimethyl formamide as a dispersion agent. The analysis of electron transmission spectroscopy and X-ray diffraction revealed that the composite contained two phases. The material has high crystallinity with a grain size of 20–50 nm. The valence states of Mn, V, and Fe in the composite were analyzed by X-ray photoelectron spectroscopy. The electrochemical kinetics in Li3V2(PO4)3 is effectively enhanced by the incorporation of LiMnPO4 and LiFePO4, via structure modification and reduced Li diffusion length. The Li3V2(PO4)3·LiMn0.33Fe0.67PO4/C materials displayed high rate capacity and steady cycle performance with discharge capacity remained 148 mAh g?1 after 50 cycles at the rate of 0.2C. In particular, the composite exhibited excellent reversible capacities, with the values of 157, 134, 120, 102, and 94 mAh g?1 at charge/discharge 0.2, 0.5, 1, 2, and 5C rates, respectively.  相似文献   

12.
We report the results of a study on ultrahigh-vacuum chemical vapor deposition of SixGe1-x layers on Si(111)(7×7) with GeH4 and Si2H6 mixtures. Using combined scanning tunneling microscopy and X-ray photoelectron spectroscopy, structural properties, the growth kinetics and the composition of the deposited alloys are analyzed as a function of the growth temperature for two different GeH4:Si2H6 mixture ratios. The mutual influence of the precursors is shown by comparing the structures formed during deposition and the sticking coefficients of Si2H6 and GeH4 with results obtained from exposure of Si(111) to the pure gases. Received: 28 July 2002 / Accepted: 2 October 2002 / Published online: 5 February 2003 RID="*" ID="*"Corresponding author. Fax: +49-731/502-5452, E-mail: hubert.rauscher@chemie.uni-ulm.de  相似文献   

13.
Specific functionalized calix[4]arene based fluorescent chemosensor was synthesized for cations and anions binding efficiency examination. Receptor C4MA displayed strong affinity for Al3+and S2O7 2? with enhanced fluorescence intensity. The selective response of C4MA was investigated in the presence of different co-existing competing ions. The limit of detection (LOD) of Al3+and S2O7 2? was calculated as 2.8?×?10?6 M and 2.6?×?10?7 M respectively. Sensor C4MA forms (1:1) stoichiometric complex with both Al3+ and S2O7 2? and their binding constants were calculated as 12.1?×?104 and 8.3?×?103 respectively. Complexes were also characterized through FT-IR spectroscopy.
Graphical Abstract ?
  相似文献   

14.
Solid solutions in the Csx(NH4)1?xLiSO4 (0≤x≤0.35) system are grown and investigated. The birefringence (na?nb) and the heat capacity are measured in the temperature range 100–530 K. The (x-T) phase diagram is constructed. It is demonstrated that the substitution of cesium for ammonium in the NH4LiSO4 crystal affects the transition temperatures in such a way that the region of the ferroelectric phase increases and the ferroelastic phase disappears at x>0.22. The character of the high-temperature transition remains unchanged (2β=0.24±0.01 for all compositions), but the birefringence anomaly and enthalpy decrease. As the concentration x increases, the low-temperature transition becomes more similar to a first-order transition: the birefringence jump δn and the temperature hysteresis ΔT increase.  相似文献   

15.
Composite structures consisting of (001)-oriented SrTiO3 (STO)/La0.7Sr0.3MnO3 (LSMO) films of 30 nm thickness, grown on an (001) Pb(Mg1/3Nb2/3)TiO3– 28 mol.% PbTiO3 piezoelectric relaxor-ferroelectric single-crystalline wafer were investigated by means of Wide-Angle X-ray Diffraction (WAXRD) in situ under influence of a d.c. electric field with strength E up to ±18 kV/cm. The WAXRD measurements of the films and substrate reflection profiles resulted in a determination of the strain s in the films and the substrate separately. The strained state of the STO/LSMO films is effectively controlled by a huge converse piezoelectric effect of the PMN-PT substrate. The coefficients of coupling between electric-field-induced out-of-plane strain in the films and in the substrate for the composite system STO/LSMO/PMN-PT are obtained.  相似文献   

16.
The band structure, density of states of AlxGa1?xN and InyGa1?yN was performed by the first-principles method within the local density approximation. The calculated energy gaps of the AlN, Al0.5Ga0.5N, GaN, In0.5Ga0.5N and InN were 5.48, 4.23, 3.137, 1.274 and 0.504 eV, which were in agreement with the experimental result. The dielectric functions, absorption coefficient and loss function were calculated based on Kramers–Kronig relations. Further more, the relationships between electronic structure and optical properties were investigated theoretically. For AlxGa1?xN and InyGa1?yN materials, the micromechanism of the optical properties were explained.  相似文献   

17.
The current-voltage characteristics of Mn4Si7-Si〈Mn〉-Mn4Si7 and Mn4Si7-Si〈Mn〉-M photodiodes are studied experimentally. The current passage mechanism under illumination with hν ≥ E g is considered. The role of a contact to Mn4Si7 in the provision of high photosensitivity under illumination of the base by light with hν ≥ 1.14 eV at low temperatures, 77–220 K, is analyzed. From electrical measurements, electron microscopic data for the Mn4Si7-Si〈Mn〉 interface, and photocurrent-voltage characteristics, a band diagram under the conditions of photocurrent passage is constructed. The high low-temperature photosensitivity of the diodes (I ph/I d ≥ 109) is explained by the impact-ionization-induced modulation of the base conductivity and injection amplification of holes in the transition layer.  相似文献   

18.
The systematic studies of the electronic state of surface layers in organic semiconductor (DOEO)4[HgBr4] · TCE by X-ray photoelectron spectroscopy and UV photoelectron spectroscopy are performed. At temperatures below 50–70 K, a transition to the antiferromagnetic state is observed in inclusions having a different structure compared to the crystal bulk. According to transmission electron microscopy, there are two types of antiferromagnetic inclusions in the samples, with sizes of 2–5 and 100–400 nm. The contributions of antiferromagnetic inclusions and the spins of localized and free charge carriers (holes) to the total magnetic moment of the crystal are separated.  相似文献   

19.
20.
At low temperatures, EuTiO3 system has very large resistivities and exhibits colossal magnetoresistance. Based on a first principle calculation and the dynamical mean-field theory for small polaron we have calculated the transport properties of EuTiO3. It is found that due to electron–phonon interaction the conduction band may form a tiny polaronic subband which is close to the Fermi level. The tiny subband is responsible for the large resistivity. Besides, EuTiO3 is a weak antiferromagnetic material and its magnetization would slightly shift the subband via exchange interaction between conduction electrons and magnetic atoms. Since the subband is close to the Fermi level, a slight shift of its position gives colossal magnetoresistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号