首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
SrDy x Fe12?x O19 (x ≤ 0.08) nanofibers have been synthesized by the electrospinning method followed by calcinations process. The partial substitution of rare earth ions Dy3+ (10.5 μ B of magnetic moments) mainly occupying 12k sublattice sites in the SrFe12O19 crystal structure is investigated and discussed in this work. An enhanced coercivity of 7155 Oe has been obtained when the doped content reached to 0.08 at a relative low calcination temperature of 800 °C. As a result, we believe the synthesized SrDy x Fe12?x O19 nanofibers can potentially be useful in high-density recording media as well as permanent magnets.  相似文献   

2.
The crystal structure and magnetic properties of the Bi1 ? x Ca x Fe1 ? x/2Nb x/2O3 system were studied. It is shown that, at x ≤ 0.15, the unit-cell symmetry of solid solutions is rhombohedral (space group R3c). Solid solutions with x ≥ 0.3 have an orthorhombic unit cell (space group Pbnm). The rhombohedral compositions are antiferromagnetic, while the orthorhombic compositions exhibit a small spontaneous magnetization due to Dzyaloshinski?-Moriya interaction. In CaFe0.5Nb0.5O3, the Fe3+ and Nb5+ ions are partially ordered and the unit cell is monoclinic (space group P21/n). In the concentration range 0.15 < x < 0.30, a two-phase state (R3c + Pbnm) is revealed.  相似文献   

3.
Li[Ni1/3Co(1-x)/3Mn1/3Fe x/3] O2(x?=?0.0, 0.1, 0.3, 0.5, 0.7, and 0.9) cathode materials have been synthesized via hydroxide co-precipitation method followed by a solid state reaction. Thermogravimetry (TG) and differential thermal analysis (DTA) measurements were utilized to determine the calcination temperature of precursor sample. The crystal structure features were characterized by X-ray diffraction (XRD). The electrochemical properties of Li[Ni1/3Co(1-x)/3Mn1/3Fe x/3]O2 were compared by means of cyclic voltammetry (CV), electrochemical impedance spectroscopy(EIS), and galvanostatic charge/discharge test. Electrochemical test results indicate that Li[Ni1/3Co0.9/3Mn1/3Fe0.1/3] O2 decrease charge transfer resistance and enhance Li+ ion diffusion velocity and thus improve cycling and high-rate capability compared with Li[Ni1/3Co1/3Mn1/3]O2. The initial discharge specific capacity of Li[Ni1/3Co0.9/3Mn1/3Fe0.1/3] O2 was 178.5 mAh/g and capacity retention was 87.11 % after 30 cycles at 0.1C, with the battery showing good cycle performance.  相似文献   

4.
Manganese oxides of spinel structure, LiMn2O4, Li1-x Ni x Mn2O4 (0.25 ≤ x≤ 0.75), and NiMn2O4, were studied by EDS, XRD, SEM, magnetic (M-H, M-T), and XPS measurements. The samples were synthesized by an ultrasound-assisted sol-gel method. EDS analysis showed good agreement with the formulations of the oxides. XRD and Rietveld refinement of X-ray data indicate that all samples crystallize in the Fd3m space group characteristic of the cubic spinel structure. The a-cell parameter ranges from a = 8.2276 Å (x = 0) to a = 8.3980 Å (x = 1). SEM results showed particle agglomerates ranging in size from 2.3 μm (x = 0) down to 0.8 μm (x = 1). Hysteresis magnetization vs. applied field curves in the 5–300K range was recorded. ZFC-FC measurements indicate the presence of two magnetic paramagnetic-ferrimagnetic transitions. The experimental Curie constant was found to vary from 5 to 7.1 cm3 K mol?1 for the range of compositions studied (0 ≤ x ≤ 1). XPS studies of these oxides revealed the presence of Ni2+, Mn3+, and Mn4+. The experimental Ni/Mn atomic ratios obtained by XPS were in good agreement with the nominal values. A linear relationship of the average oxidation state of Mn with Ni content was observed. The oxide’s cation distributions as a function of Ni content from x = 0 ?Li+[Mn3+Mn4+]O4 to x = 1 \( {\mathrm{Ni}}_{0.35}^{2+}{\mathrm{Mn}}_{0.65}^{3+}\left[{\mathrm{Ni}}_{0.65}^{2+}\right.\left.{\mathrm{Mn}}_{1.35}^{3+}\right]{\mathrm{O}}_4 \) were proposed.  相似文献   

5.
Lead-free Na0.5Bi0.5TiO3 (NBT) and (1 ? x)Na0.5Bi0.5TiO3 + xBaTiO3 with x = 0.1 and 0.2 (where x = 0.1 and 0.2 are named as NBT1 and NBT2, respectively), (1 ? y)Na0.5Bi0.5TiO3 + yBa0.925Nd0.05TiO3 with y = 0.1 and 0.2 (where y = 0.1 and 0.2 are named as NBT3 and NBT4, respectively)-based relaxor ferroelectric ceramics were prepared using the sol-gel method. The crystal structure was investigated by X-ray diffraction (XRD) at room temperature (RT). The XRD patterns confirmed the presence of the rhombohedral phase in all the samples. The electrical properties of the present NBT-based samples were investigated by complex impedance and the modulus spectroscopy technique in the temperature range of RT–600 °C. The AC conductivity was found to increase with the substitution of Ba2+ ions to the NBT sample whereas it significantly decreased with the addition of Nd3+ ions. The more anion vacancies in Ba-added samples and the lower anion vacancies in Nd-added samples were found to be responsible for higher and lower conductivities, respectively.  相似文献   

6.
Lithium vanadium-borate glasses with the composition of 0.3Li2O–(0.7-x)B2O3xV2O5 (x?=?0.3, 0.325, 0.35, 0.375, 0.4, 0.425, 0.45, and 0.475) were prepared by melt-quenching method. According to differential scanning calorimetry data, vanadium oxide acts as both glass former and glass modifier, since the thermal stability of glasses decreases with an increase in V2O5 concentration. Fourier transform infrared spectroscopy data show that the vibrations of [VO4] structural units occur at V2O5 concentration of 45 mol%. It is established that the concentration of V4+ ions increases exponentially with the growth of vanadium oxide concentration. Direct and alternative current measurements are carried out to estimate the contribution both electronic and ionic conductivities to the value of total conductivity. It is shown that the electronic conductivity is predominant in the total one. The glass having the composition of 0.3Li2O-0.275B2O3-0.475V2O5 shows the highest electrical conductivity that has the value of 7.4?×?10?5 S cm?1 at room temperature.  相似文献   

7.
The polycrystalline samples of (Bi1?x K x ) (Fe1?x Nb x ) O3 (BKFN) for x = 0.0, 0.1, 0.2 and 0.3 were synthesized by a solid-state reaction method. The X-ray diffraction patterns of BKFN exhibit that the addition of KNbO3 in BiFeO3 gradually changes its structure from rhombohedral to pseudocubic. The analysis of scanning electron micrograph clearly showed that the sintered samples have well-defined and uniformly distributed grains. Addition of KNbO3 to BiFeO3 enhances the dielectric, ferroelectric and ferromagnetic properties of BiFeO3. Detailed studies of impedance and related parameters of BKFN using the complex impedance spectroscopic technique exhibit the significant contributions of grain and grain boundaries in the resistive and transport properties of the materials. Some oxygen vacancies created in the ceramic samples during high-temperature processing play an important role in the conduction mechanism. The leakage current or tangent loss of BiFeO3 is greatly reduced on addition of KNbO3 to the parent compound BiFeO3. Preliminary studies of ferroelectric and magnetic characteristics of the samples reveal the existence of ferroelectric, and weak ferromagnetic ordered ceramics.  相似文献   

8.
Advanced Li-air battery architecture demands a high Li+ conductive solid electrolyte membrane that is electrochemically stable against metallic lithium and aqueous electrolyte. In this work, an investigation has been carried out on the microstructure, Li+ conduction behaviour and structural stability of Li7La3-x Y x Zr2O12 (x = 0.125, 0.25 and 0.50) prepared by conventional solid-state reaction technique. The phase analysis of Li7La3-x Y x Zr2O12 (x = 0.125, 0.25 and 0.50) sintered at 1200 °C by powder X-ray diffraction (PXRD) and Raman confirms the formation of high Li+ conductive cubic phase (\( Ia\overline{3}d \)) lithium garnets. Among the investigated lithium garnets, Li7La2.75Y0.25Zr2O12 sintered at 1200 °C exhibits a maximized room temperature total (bulk + grain boundary) Li+ conductivity of 3.21 × 10?4 S cm?1 along with improved relative density of 96 %. The preliminary investigation on the structural stability of Li7La2.75Y0.25Zr2O12 in the solutions of 1 M LiCl, dist. H2O and 1 M LiOH at 30 °C/50 °C indicates that the Li7La2.75Y0.25Zr2O12 is relatively stable against 1 M LiCl and dist. H2O. Further electrochemical investigation is essential for practical application of Li7La2.75Y0.25Zr2O12 as protective solid electrolyte membrane in aqueous Li-air battery.  相似文献   

9.
The sample of Mg0. 5+y (Zr1-y Fey) 2 (PO4) 3 (0.0 ≤y ≤0.5) was synthesized using the sol-gel method. The structures of the samples were investigated using X-ray diffraction and Fourier transform infrared spectroscopy measurement. XRD studies showed that samples had a monoclinic structure which was iso-structured with the parent compound, Mg0.5Zr (PO4) 3. The complex impedance spectroscopy was carried out in the frequency range 1–6 MHz and temperature range 303 to 773 K to study the electrical properties of the electrolytes. The substitutions of Fe3+ with Zr4+ in the Mg0.5Zr (PO4) 3 structure was introduced as an extrainterstitial Mg2+ ion in the modified structured. The compound of Mg0.5+y (Zr1-y Fey)2(PO4)3 with y?=?0.4 gives a maximum conductivity value of 1.25?×?10?5 S cm?1 at room temperature and 7.18?×?10?5 S cm?1 at 773 K. Charge carrier concentration, mobile ion concentration, and ion hopping rate are calculated by fitting the conductance spectra to power law variation, σ ac (ω)?=?σ o ? +?Aω α . The charge carrier concentration and mobile ion concentration increases with increase of Fe3+ inclusion. This implies the increase in conductivity of the compounds was due to extra interstitial Mg2+ ions.  相似文献   

10.
The temperature-dependent field cooling (FC) and zero-field cooling (ZFC) magnetizations, i.e., M FC and M ZFC, measured under different magnetic fields from 500 Oe to 20 kOe have been investigated on two exchange–spring CoFe2O4/CoFe2 composites with different relative content of CoFe2. Two samples exhibit different magnetization reversal behaviors. With decreasing temperature, a progressive freezing of the moments in two composites occurs at a field-dependent irreversible temperature T irr. For the sample with less CoFe2, the curves of ?d(M FC ? M ZFC)/dT versus temperature T exhibit a broad peak at an intermediate temperature T 2 below T irr , and the moments are suggested not to fully freeze till the lowest measuring temperature 10 K. However, for the ?d(M FC ? M ZFC)/dT curves of the sample with more CoFe2, besides a broad peat at an intermediate temperature T 2, a rapid rise around the low temperature T 1~15 K is observed, below which the moments are suggested to fully freeze. Increase of magnetic field from 2 kOe leads to the shift of T 2 and T irr towards a lower temperature, and the shift of T 2 is attributable to the moment reversal of CoFe2O4.
Graphical abstract CoFe2O4/CoFe2 composites with different relative content of CoFe2 were prepared by reducing CoFe2O4 in H2 for 4 h (S4H) and 8 h (S8H). The temperature-dependent FC and ZFC magnetizations, i.e., M FC and M ZFC, under different magnetic fields from 500 Oe to 20 kOe have been investigated. Two samples exhibit different magnetization reversal behaviors. With decreasing temperature, a progressive freezing of the moments in two composites occurs at field-dependent irreversible temperature T irr. For the S4H sample, the curves of ?d(M FC ? M ZFC)/dT versus temperature T exhibit a broad and field-dependent relaxing peak at T 2 below T irr (figure a), and the moments were suggested not to fully freeze till the lowest measuring temperature 10 K. However, for the S8H sample, it exhibits the reentrant spin-glass state around 50 K, as evidenced by a peak in the M FC curve (inset in figure b) and as a result of the cooperative effects of the random anisotropy of CoFe2O4, exchange–spring occurring at the interface of CoFe2O4 and CoFe2 together with the inter-particle dipolar interaction (figure c); in ?d(M FC ? M ZFC)/dT curves, besides a broad relaxing peat at T 2, a rapid rise around the low-temperature T 1~15 K is observed, below which the moments are suggested to fully freeze. Increase of magnetic field from 2 kOe leads to the shift of T 2 and T irr towards a lower temperature, and the shift of T 2 is attributable to the moment reversal of CoFe2O4.
  相似文献   

11.
Solid solutions of Bi1 ? x A x (Fe1 ? x/2Nb x/2)O3, where A = Ca, Ba, and Pb, are obtained and their crystal structure and magnetic properties are investigated. It is shown that for A = Ca and x ≈ 0.15, the symmetry of the unit cell changes from rhombohedral (space group R3c) to orthorhombic (Pbnm). The transformation leads to the emergence of spontaneous magnetization due to the Dzyaloshinskii-Moriya interaction. Solid solutions with A = Pb remain rhombohedral up to a concentration of x = 0.3. Spontaneous magnetization sharply increases in the compound with x ≈ 1 at low temperatures and is due to the formation of the spin-glass component.  相似文献   

12.
A comparative analysis of the results of the X-ray and Mösbauer studies of the high-temperature superconductor (HTSC) YBa2Cu3O y and YBa2Cu3 ? x 57Fe x O y (x = 0.015, T c ≈ 91.5 K) samples with different average grain sizes <D> in the micron and submicron ranges has been performed. The regularities in the change in the lattice parameter c and in the degree of occupation of different oxygen sites in the CuOδ chain planes taking place at the decrease in <D> have been studied. The quantitative interrelation between the parameter c and the oxygen content δ in the CuOδ planes exceeding the amount of the mobile oxygen due to the interplane oxygen redistribution is established.  相似文献   

13.
We report on structural, magnetic, conductivity, and thermodynamic studies of FeSe0.5Te0.5 single crystals grown by self-flux and Bridgman methods. The lowest values of the susceptibility in thenormal state, the highest transition temperature T c of 14.4 K, and the largest heat-capacity anomaly at T c were obtained for pure (oxygen-free) samples. The criticalcurrent density j c of 8.6 × 104A/cm2 (at 2 K) achieved in pure samples is attributed to intrinsic inhomogeneity due to disorder at the anion sites. The samples containing an impurity phase of Fe3O4 show increased j c up to2.3 × 105A/cm2 due to additional pinning centers. The upper critical field\(H_{c2}\)of ~500 kOe is estimated from the resistivity studyin magnetic fields parallel to the c-axis using a criterion of a 50%drop of the normal state resistivity R n . The anisotropy ofthe upper critical fieldγ H c2 =H ab c2/H c2 c reaches a value ~6 at\(T\longrightarrow T_c\). Extremely low values of the residualSommerfeld coefficient \(\gamma_r\) of about 1 mJ/mol K2,compared to the normal state Sommerfeld coefficient γ n = 25mJ/mol K2 for pure samples indicate a high volume fraction of thesuperconducting phase (up to 97%). The electronic contribution to the specific heat in thesuperconducting state is well described within a single-band BCS model with a temperature dependent gapΔ(0 K) = 27(1) K. A broad cusp-like anomaly in the electronic specific heat observed at low temperatures in samples with suppressed bulk superconductivity is ascribed to a splitting of the ground state of the Fe2+ ions at the 2c sites. This contribution is fully suppressed in the ordered state in samples with bulk superconductivity.  相似文献   

14.
Nonstoichiometric Bi2WO6 photocatalyst with the composition of Bi2?+?x WO6?+?1.5x (?0.25 ≤ x ≤ 1) wa synthesized by a facile solid state reaction method. The products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and UV-vis absorption spectrum. The Bi2.5WO6.75 photocatalyst showed excellent visible-light-driven photocatalytic performance; nearly 100 % of RhB (10 ppm, pH?=?3?~?4) was decomposed within 25 min, which demonstrated that nonstoichiometric semiconductors could be an efficient visible-light-driven photocatalyst.  相似文献   

15.
Tm x Cu3V4O12, a perovskite-like oxide (space group, Im-3; Z = 2; a = 7.279–7.293 Å) containing vacancies in its cationic sublattice, was obtained barothermally (P = 7.0–9.0 GPa, t = 1000–1100°C) for the first time. The temperature dependences on the electrical resistivity (10–300 K) and the magnetic susceptibility (0–300 K) were investigated. It was shown that the oxide Tm x Cu3V4O12 is characterized by metal-type conductivity and paramagnetic properties.  相似文献   

16.
Single-crystal samples of the Bi2 + xSr2 ? x ? yCu1 + yO6 + δ system revealed anomalous (negative) thermal expansion in the temperature range 10–20 K. Magnetic fields of 1–3 T were found to strongly affect the position and width of the anomaly region. A thermal-expansion singularity was detected at temperatures T≈30–50 K, which may be related to the formation of a pseudogap.  相似文献   

17.
In this work, we research two series of Mn-substituted bismuth molybdates: Bi26-2xMn2xMo10O69-d and Bi26Mo10-2yMn2yO69-d. The synthesis of powder samples is performed by the conventional solid state technology. Samples are characterized by X-ray diffraction, scanning electron microscopy, and chemical analysis methods, and it is shown that single phase Bi26-2xMn2xMo10O69-d and Bi26Mo10-2yMn2yO69-d complex oxides form up to x = 0.8 and y = 0. We use densitometry, grain size measurements and scanning electron microscopy to study the morphology of ceramic pellets and powders. This issue reveals formation of dense ceramic samples with low porosity (≤3%). High-temperature X-ray diffraction is used to define small deviation of unit cell parameters from their linear dependence on temperature. Measurement of electrical conductivity is made using a.c. impedance spectroscopy method. We observe the decrease of electrical conductivity in Bi26-2xMn2xMo10O69-d series depending on dopant concentration.  相似文献   

18.
The magnetic and elastic properties of the Bi1-xCaxMnO3 manganites are studied. The phase transformations revealed are ferromagnet-spin glass (x≥0.15) and spin glass-charge-ordered antiferromagnet (x≥0.25). The ferromagnetic state is characterized by ordering of the Mn3+d x 2-y orbitals. It is suggested that thespin glass state originates from local static Jahn-Teller distortions. The antiferromagnetic charge-ordered and the spin-glass disordered phases coexist in samples with 0.25<x<0.32, which may be due to the charge order-disorder phase transformation being martensitic in character. The magnetic phase diagram is constructed.  相似文献   

19.
The effect of low-temperature annealing on the magnetization curve of YBa2Cu3O6 + x ceramics in the superconducting state (x ≈ 0.9) is investigated. When the annealing time is fairly long, the field dependence of magnetic moment M exhibits a feature in the form of a plateau, where the value of M remains almost constant. The evolution of this feature in the magnetization curves of annealed samples with annealing time and temperature is studied. It is assumed that low-temperature annealing gives rise to metastable ferromagnetic clusters in YBa2Cu3O6 + x ceramics, the contribution of which to the magnetic moment accounts for the feature in the magnetization curves of the annealed samples.  相似文献   

20.
The Ru-Ru spin-singlet formation in La2 ? x L n x RuO5 (Ln = Pr, Nd, Sm, Gd, Dy) was investigated by measurements of the specific heat and magnetic susceptibility. After subtraction of the lattice contribution from the specific heat (C p ), similar excess entropy values were obtained for all compounds. These entropies can be explained by the formation of antiferromagnetic Ru-spin dimers at low temperatures and provide a lower estimate for the intradimer exchange strength. Pronounced changes in the transition temperatures and a broadening of the corresponding peak in C p were observed. These changes depend on the rare-earth element and are due to local structural changes and heterogeneities caused by the substitution. The magnetic susceptibilities can be described by the sum of a rare-earth paramagnetic moment and the susceptibility of the unsubstituted La2RuO5. Density functional theory (DFT) calculations were performed for various compounds to investigate the origin of the magnetic transition and the relationship between structural changes and the spin-dimerization temperature. The combination of the present results with previous structural investigations supports the model of a spin-pairing of the Ru moments which occurs as a reason of the structural phase transition in La2 ? x L n x RuO5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号