首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
运用电致发光(EL)和光致发光(PL)实验,分析了图形化蓝宝石衬底(PSSLEDs)和常规平面蓝宝石衬底(C-LEDs)InGaN/GaN多量子阱发光二极管的光谱特性。对比EL谱,发现PSSLEDs拥有更强的光功率和更窄的半峰宽(FWHM),说明PSSLEDs具有较高的晶体质量。其次,PSSLEDs的EL谱半峰宽随电流增加出现了更快的展宽,而这两种LED样品的PL谱半峰宽随激光功率增加呈现了基本相同的展宽变化,说明在相同电流下,PSSLEDs量子阱中载流子浓度更高,能带填充效应更强。另外,随着电流的增加,PSSLEDs和C-LEDs的峰值波长都发生蓝移,且前者的蓝移程度较小,结合半峰宽的对比分析,说明PSSLEDs量子阱中的极化电场较小。最后,对比了PSSLEDs和C-LEDs的外量子效率随电流的变化,发现PSSLEDs拥有更严重的efficiency droop,说明量子阱中极化电场不是导致efficiency droop的主要原因。  相似文献   

2.
We grew an InGaN/GaN-based light-emitting diode (LED) wafer by metal–organic chemical vapor deposition (MOCVD), fabricated devices by optical lithography, and successfully deposited ellipsoidal Ag nano-particles by way of e-beam lithography on top. The diodes exhibited good device performance, in which we expected an enhancement of the radiated intensity by the simulations and emission measurements. The obtained results showed the feasibility of plasmon-assisted LED emission enhancement.  相似文献   

3.
《Physics letters. A》2006,355(2):118-121
In this study, Raman spectra were measured in the backscattering geometry at temperatures from 100 K to 298 K. Samples with the InGaN self-assembled quantum dot (SAQD) structures of high strain show a strong compressive stress in InGaN epilayer by Raman measurement. Furthermore, we have applied the dots-in-a-well (DWELL) structure to nitride-based light-emitting diodes (LEDs). It was found that EL peak variation of the LED with DWELL structure is more sensitive to the amount of injection current, as compared with the MQW LEDs.  相似文献   

4.
We provide a large F-P cavity model to analyze the effects of reflector-induced interferences on light extraction of InGaN/GaN vertical light emitting diodes (VLEDs). It shows that the distance (d) between the active region and the metal reflector has a significant influence on extraction efficiency due to interferences. The maximum in extraction efficiency corresponding to the optimal d is about three times the neighboring minimum. The reflector of different metals is considered in this model and the results show that the optimal d and the value of the maximum in the extraction efficiency are directly related to the type of metal, which can be attributed to varied reflection phase shift and reflectivity on different metals, respectively.  相似文献   

5.
The advantages of InGaN based light-emitting diodes with InGaN/GaN multilayer barriers are studied.It is found that the structure with InGaN/GaN multilayer barriers shows improved light output power,lower current leakage,and less efficiency droop over its conventional InGaN/GaN counterparts.Based on the numerical simulation and analysis,these improvements on the electrical and the optical characteristics are mainly attributed to the alleviation of the electrostatic field in the quantum wells(QWs) when the InGaN/GaN multilayer barriers are used.  相似文献   

6.
顾晓玲  郭霞  吴迪  李一博  沈光地 《物理学报》2008,57(2):1220-1223
通过调整GaN基发光二极管(LED)表面InGaN层的厚度,发现在20 mA电流驱动下,LED器件的正向压降有明显差距.本文考虑了极化效应的影响,通过求解InGaN/GaN三角形势阱内二维空穴气浓度以及空穴隧穿概率的变化,求得了表面InGaN层厚度不同时器件正向压降的变化趋势,发现理论结果与实验结果有很好的吻合.同时得到了获得最低正向压降的表面InGaN厚度. 关键词: 极化 二维空穴气 隧穿概率  相似文献   

7.
通过调整GaN基发光二极管(LED)表面InGaN层的厚度,发现在20 mA电流驱动下,LED器件的正向压降有明显差距.本文考虑了极化效应的影响,通过求解InGaN/GaN三角形势阱内二维空穴气浓度以及空穴隧穿概率的变化,求得了表面InGaN层厚度不同时器件正向压降的变化趋势,发现理论结果与实验结果有很好的吻合.同时得到了获得最低正向压降的表面InGaN厚度.  相似文献   

8.
We have reported the effects of growth interruption time on the optical and structural properties of high indium content InxGa1−xN/GaN (x>0.2) multilayer quantum wells (QWs). The InGaN/GaN QWs were grown on c-plane sapphire by metal organic chemical vapor deposition. The interruption was carried out by closing the group-III metal organic sources before and after the growth of the InGaN QW layers. The transmission electron microscopy (TEM) images show that with increasing interruption time, the quantum-dot-like region and well thickness decreases due to indium reevaporation or the thermal etching effect. As a result the photoluminescence (PL) peak position was blue-shifted and the intensity was reduced. The sizes and number of V-defects did not differ with the interruption time. The interruption time is not directly related to the formation of defects. The V-defect originates at threading dislocations and inversion domain boundaries due to higher misfit strain. Temperature dependent PL spectra support the results of TEM measurements. Also, the electroluminescence spectra of light-emitting diode show that dominant mechanism in InGaN/GaN QWs is a localized effect in the quantum-dot-like regions.  相似文献   

9.
刘木林  闵秋应  叶志清 《物理学报》2012,61(17):178503-178503
InGaN/GaN基阱垒结构LED当注入的电流密度较大时, LED的量子效率随注入电流密度增大而下降, 即droop效应.本文在Si (111)衬底上生长了 InGaN/GaN 基蓝光多量子阱结构的LED,通过将实验测量的光电性能曲线与利用ABC模型模拟的结果进行对比, 探讨了droop效应的成因.结果显示:温度下降会阻碍电流扩展和降低空穴浓度, 电子在阱中分布会越来越不平衡,阱中局部区域中因填充了势能越来越高的电子而溢出阱外, 从而使droop效应随着温度的降低在更小的电流密度下出现且更为严重, 不同温度下实验值与俄歇复合模型模拟的结果在高注入时趋势相反.这此结果表明,引起 droop效应的主因不是俄歇非辐射复合而是电子溢出,电子溢出的本质原因是载流子在阱中分布不均衡.  相似文献   

10.
We present high color temperature white organic light emitting diodes with a simple p-i-n structure. A sky blue phosphorescent dopant of iridium(III) bis[4,6-(difluorophenyl)-pyridinato-N,C2’] picolinate and a red phosphorescent dopant of bis(2-phenylquinoline)(acetylacetonate)iridium(III) in the emissive layers is employed to make high color temperature devices. Very stable color variation under ?0.02 until a 5000 cd/m2 brightness value is realized by efficient carrier control in a multi stacked emitting layer of blue/red/blue colors. Maximum current and power efficiencies of 23.8 cd/A and 22.9 lm/W in forward direction are obtained. With balanced emissions from the two emitters, the white light emission with very high correlated color temperature of 7308 K as well as CIE coordinates of (0.30, 0.33) is achieved.  相似文献   

11.
Light emitting diodes (LEDs) based on GaN/InGaN material suffer from efficiency droop at high current injection levels. We propose multiple quantum well (MQW) GaN/InGaN LEDs by optimizing the barrier thickness and high–low–high indium composition to reduce the efficiency droop. The simulation results reflect a significant improvement in the efficiency droop by using barrier width of 10 nm and high–low–high indium composition in MQW LED.  相似文献   

12.
功率型发光二极管的研究与应用进展   总被引:3,自引:0,他引:3  
张万生  布良基 《物理》2003,32(5):309-314
文章首先对功率型发光二极管的起源和发展作了回顾和简要的叙述.然后以固体光源照明为目标,给出了几种可见光功率发光二极管芯片和封装的典型结构,并且对它们各自的特点进行了比较.最后指出了功率发光二极管作为固体光源取代真空灯泡用于照明在未来的五至十年内将成为现实.  相似文献   

13.
Silicon has been regarded as a notoriously poor emitter of light fundamentally due to its indirect bandgap. However, as an elemental rather than a compound semiconductor, it has the advantage of fewer background defects as well as well-developed approaches to interface passivation. By minimising parasitic optical absorption and non-radiative bulk and surface recombination, and by enhancing the effective optical photon generation volume, respectable silicon light emission efficiencies are demonstrated. These are within the range of direct gap III–V semiconductors and higher than any at low powered densities. Possible applications are also discussed.  相似文献   

14.
Shuji Nakamura discovered p‐type doping in Gallium Nitride (GaN) and developed blue, green, and white InGaN based light emitting diodes (LEDs) and blue laser diodes (LDs). His inventions made possible energy efficient, solid‐state lighting systems and enabled the next generation of optical storage. Together with Isamu Akasaki and Hiroshi Amano, he is one of the three recipients of the 2014 Nobel Prize in Physics. In his Nobel lecture, Shuji Nakamura gives an overview of this research and the story of his inventions *** .

  相似文献   


15.
发光二极管材料与器件的历史、现状和展望   总被引:23,自引:0,他引:23  
方志烈 《物理》2003,32(5):295-301
文章介绍了发光二极管材料和器件的研究、开发的历史,概述了发光二极管技术的发展现状和进展.通过与其他类型光源的比较,向读者展示了发光二极管未来的重要地位和光明前景.发光二极管的最近的成就是实现了有色光方面的成功应用.高功率白色发光二极管已开始应用于便携式和特殊照明.而在通用的照明领域要成功地应用发光二极管,则需要通过性能和价格方面的继续突破来实现.  相似文献   

16.
In this study, the influence of multiple interruptions with trimethylindium(TMIn)-treatment in InGaN/GaN multiple quantum wells(MQWs) on green light-emitting diode(LED) is investigated. A comparison of conventional LEDs with the one fabricated with our method shows that the latter has better optical properties. Photoluminescence(PL) full-width at half maximum(FWHM) is reduced, light output power is much higher and the blue shift of electroluminescence(EL) dominant wavelength becomes smaller with current increasing. These improvements should be attributed to the reduced interface roughness of MQW and more uniformity of indium distribution in MQWs by the interruptions with TMIn-treatment.  相似文献   

17.
陈钊  杨薇  刘磊  万成昊  李磊  贺永发  刘宁炀  王磊  李丁  陈伟华  胡晓东 《中国物理 B》2012,21(10):108505-108505
The InGaN/GaN blue light emitting diode(LED) is numerically investigated using a triangular-shaped quantum well model,which involves analysis on its energy band,carrier concentration,overlap of electron and hole wave functions,radiative recombination rate,and internal quantum efficiency.The simulation results reveal that the InGaN/GaN blue light emitting diode with triangular quantum wells exhibits a higher radiative recombination rate than the conventional light emitting diode with rectangular quantum wells due to the enhanced overlap of electron and hole wave functions(above 90%) under the polarization field.Consequently,the efficiency droop is only 18% in the light emitting diode with triangular-shaped quantum wells,which is three times lower than that in a conventional LED.  相似文献   

18.
A low-junction-temperature light emitting diode (LED) by selectively ion-implantation in part of the p-type GaN layer is demonstrated. The junction temperature extracted from a forward voltage method of an ion-implanted LED is significantly lower than that of a conventional LED. Furthermore, the linearity of the luminescence-current curve of the device is improved without altering electrical properties.  相似文献   

19.
Effect of Si-doping on InGaN layers below the quantum wells (QWs), which cause different levels of charge concentration in the depletion region, have been investigated for InGaN light emitting diodes (LEDs). Four groups of InGaN LEDs with different levels of Si-doping on InGaN/GaN layers below quantum-wells have been produced for the experiment (i.e., 0.5 × 1017 cm?3 for group A, 1 × 1017 cm?3 for group B, 5 × 1017 cm?3 for group C, and 1 × 1018 cm?3 for group D.) The reverse leakage current of LED can be significantly decreased and the light output power of LED can be enhanced by lowering the background charge concentration in the depletion region of LED. Such result enables us to improve the device lifetime by inhibiting the degradation of the GaN-based LED.  相似文献   

20.
High efficient green light emitting diodes (LED) on the basis of GaN/InGaN exhibit indium-rich nanoclusters inside the quantum wells (QW) due to InN-GaN phase decomposition. By direct measurements of the variations in the electronic structure, we show for the first time a correlation between indium-rich nanoclusters and local energy band gap minima. Our investigations reveal the presence of 1-3 nm wide indium rich clusters in these devices with indium concentrations x as large as x∼0.30-0.40 that narrow the band gap locally to energies as small as 2.65 eV. These clusters are able to act as local traps for migrating photon-emitting carriers and seem to boost the overall device performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号