首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, the generalized \(\tan (\phi /2)\)-expansion method and He’s semi-inverse variational method (HSIVM) are applied to seek the exact solitary wave solutions for the resonant nonlinear Schrödinger equation with time-dependent coefficients. Using these methods, we investigate exact solutions for the nonlinear resonant Schrödinger equation with time-dependent coefficients two forms of nonlinearity, including power and dual-power law nonlinearity. Moreover, many new analytical exact solutions are obtained which are expressed by hyperbolic solutions, trigonometric solutions, and rational solutions. In addition, we obtained the bright soliton by HSIVM. These methods are powerful, efficient and those can be used as an alternative to establishing new solutions of different types of differential equations in mathematical physics and engineering.  相似文献   

2.
In this paper, the generalized tanh method is used to construct dispersive optical solitons for the resonant Schrödinger’s equation with dual-power law nonlinearity and time-dependent coefficients. Some optical solitons of this equation have been obtained. We have proved that the terms of equation, like velocity, are effected by examined dependent coefficients terms of the equation.  相似文献   

3.
4.
In this paper, we acquire the soliton solutions of the nonlinear Schrodinger’s equation with dual power-law nonlinearity. Primarily, we use the extended trial equation method to find exact solutions of this equation. Then, we attain some exact solutions including soliton solutions, rational and elliptic function solutions of this equation using the extended trial equation method.  相似文献   

5.
In this paper, the resonant nonlinear Schrödinger's equation is studied with five forms of nonlinearity. This equation is also considered with time-dependent coefficients and additionally time-dependent linear attenuation is considered. The ansatz method approach is used to carry out the integration. Both bright and dark soliton solutions are obtained in this paper. The constraint conditions for the existence of soliton solutions are also given.  相似文献   

6.
In this work, we consider the solvability of the Fokker–Planck equation with both time-dependent drift and diffusion coefficients by means of the similarity method. By the introduction of the similarity variable, the Fokker–Planck equation is reduced to an ordinary differential equation. Adopting the natural requirement that the probability current density vanishes at the boundary, the resulting ordinary differential equation turns out to be integrable, and the probability density function can be given in closed form. New examples of exactly solvable Fokker–Planck equations are presented, and their properties analyzed.  相似文献   

7.
8.
In this paper we have analytically solved the Fokker-Planck equation (FPE) associated with a fairly large class of multiplicative stochastic processes with time-varying nonliner drift and diffusion coefficients, which has wide applicability in various areas of physics, e.g. nonlinear optics and chemical reaction dynamics. By exploiting the dynamical symmetry of the FPE, we apply the Lie-algebraic approach to derive the time-dependent analytical closed-form solutions. The derived solutions fall into two different categories, namely (i) one with a moving absorbing boundary, and (ii) one with a fixed absorbing boundary at the origin, depending upon the model parameters. The corresponding escape (or survival) probabilities are also evaluated analytically. We believe that not only our analytically exact results can serve as standard models upon which the discussion of more complicated problems can be based, but they can also be useful as a benchmark to test approximate numerical or analytical procedures.  相似文献   

9.
欧阳世根  郭旗  吴立军  兰胜 《中国物理》2007,16(8):2331-2337
The derivations of several conservation laws of the generalized nonlocal nonlinear Schr?dinger equation are presented. These invariants are the number of particles, the momentum, the angular momentum and the Hamiltonian in the quantum mechanical analogy. The Lagrangian is also presented.  相似文献   

10.
Semiclassically concentrated states of the nonlinear Schrödinger equation (NLSE) with unitary nonlinearity, representing multidimensional localized wave packets, are constructed on the basis of the Maslov complex germ theory. A system of ordinary differential equations of Hamilton-Ehrenfest (HE) type, describing the motion of the wave packet centroid, is derived. The structure of the HE system is strongly influenced by the initial conditions of the Cauchy problem for the NLSE. Wave packets of Gaussian type are constructed in an explicit form. Possible use of the solutions constructed in the problem of optical pulse propagation in a nonlinear medium with nonstationary dispersion is discussed.  相似文献   

11.
Using the wave packet theory,we obtain all the solutions of the weakly damped nonlinear Schrodinger equation.These solutions are the static solution,and solutions of planar wave,solitary wave,shock wave and elliptic function wave and chaos.The bifurcation phenomenon exists in both steady and non-steady solutions.The chaotic and periodic motions can coexist in a certain parametric space region.  相似文献   

12.
13.
14.
A broad class of exact self-similar solutions to the nonlinear Schr?dinger equation (NLSE) with distributed dispersion, nonlinearity, and gain or loss has been found. Appropriate solitary wave solutions applying to propagation in optical fibers and optical fiber amplifiers with these distributed parameters have also been studied. These solutions exist for physically realistic dispersion and nonlinearity profiles in a fiber with anomalous group velocity dispersion. They correspond either to compressing or spreading solitary pulses which maintain a linear chirp or to chirped oscillatory solutions. The stability of these solutions has been confirmed by numerical simulations of the NLSE.  相似文献   

15.
In this paper,by means of similarity transfomations,we obtain explicit solutions to the cubic-quintic nonlinear Schrdinger equation with varying coefficients,which involve four free functions of space.Four types of free functions are chosen to exhibit the corresponding nonlinear wave propagations.  相似文献   

16.
殷久利  赵刘威  田立新 《中国物理 B》2014,23(2):20204-020204
The nonlinear Schrdinger equation with Kerr law nonlinearity in the two-frequency interference is studied by the numerical method.Chaos occurs easily due to the absence of damping.This phenomenon will cause the distortion in the process of information transmission.We find that fiber-optic transmit signals still present chaotic phenomena if the control intensity is smaller.With the increase of intensity,the fiber-optic signal can stay in a stable state in some regions.When the strength is suppressed to a certain value,an unstable phenomenon of the fiber-optic signal occurs.Moreover we discuss the sensitivities of the parameters to be controlled.The results show that the linear term coefficient and the environment of two quite different frequences have less effects on the fiber-optic transmission.Meanwhile the phenomena of vibration,attenuation and escape occur in some regions.  相似文献   

17.
The nonlinear Schrödinger equation with periodic coefficients is analyzed under the condition of large variation in the local dispersion. The solution after n periods is represented as the sum of the solution to the linear part of the nonlinear Schrödinger equation and the nonlinear first-period correction multiplied by the number of periods n. An algorithm for calculating the quasilinear solution with arbitrary initial conditions is proposed. The nonlinear correction to the solution for a sequence of Gaussian pulses is obtained in the explicit form.  相似文献   

18.
A non-perturbative analytical solution is derived for the time fractional nonlinear Burger’s equation by using Adomian Decomposition Method (ADM). The present method performs extremely well in terms of accuracy, efficiency and simplicity.  相似文献   

19.
In this paper,by means of similarity transfomations,we obtain explicit solutions to the cubic-quintic nonlinear Schr顜僤inger equation with varying coefficients,which involve four free functions of space.Four types of free functions are chosen to exhibit the corresponding nonlinear wave propagations.  相似文献   

20.
In this letter, exact chirped multi-soliton solutions of the nonlinear Schrodinger (NLS) equation with varying coefficients are found. The explicit chirped one- and two-soliton solutions are generated. As an example, an exponential distributed control system is considered, and some main features of solutions are shown. The results reveal that chirped soliton can all be nonlinearly compressed cleanly and efficiently in an optical fiber with no loss or gain, with the loss, or with the gain. Furthermore, under the same initial condition, compression of optical soliton in the optical fiber with the loss is the most dramatic. Also, under nonintegrable condition and finite initial perturbations, the evolution of chirped soliton has been demonstrated by simulating numerically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号