首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A mathematical model was developed for the plasma-chemical pyrolysis of methane, which includes the latest data on the mechanism and kinetics of chemical processes of hydrocarbon pyrolysis and mixing of methane jets with hydrogen heated in an arc plasma torch. The results of calculations on methane conversion and the synthesis of acetylene and its homologues satisfactorily agree with experimental data over a wide range of parameters of the process. It was shown that the methane conversion is initiated via interaction with atomic hydrogen, acetylene is produced through the dissociation of intermediate products involving radicals, and the consumption of acetylene is due to the synthesis of its homologues involving vinylidenecarbene and methylenecarbene in the ground and excited states.  相似文献   

2.
Long, laminar plasma jets at atmospheric pressure of pure argon and a mixture of argon and nitrogen with jet length up to 45 times its diameter could be generated with a DC arc torch by restricting the movement of arc root in the torch channel. Effects of torch structure, gas feeding, and characteristics of power supply on the length of plasma jets were experimentally examined. Plasma jets of considerable length and excellent stability could be obtained by regulating the generating parameters, including arc channel geometry, gas flow rate, and feeding methods, etc. Influence of flow turbulence at the torch nozzle exit on the temperature distribution of plasma jets was numerically simulated. The analysis indicated that laminar flow plasma with very low initial turbulent kinetic energy will produce a long jet with low axial temperature gradient. This kind of long laminar plasma jet could greatly improve the controllability for materials processing, compared with a short turbulent arc jet.  相似文献   

3.
Quenching is a key approach to obtain high acetylene yield in the process of coal tar pyrolysis to produce acetylene in a thermal plasma reactor due to the thermodynamic characteristics of acetylene. Experiments of coal tar pyrolysis were carried out in a lab-scale H2/Ar plasma reactor under various quenching conditions. Meanwhile, thermodynamic analysis was performed to assist the optimization of quenching temperature and the maximization of acetylene yield. As quenching media in the experiments, hydrogen, argon, methane, and water were used separately to study the influence of quenching process on acetylene yield and specific energy requirement. The experimental results indicate that the acetylene concentration in quenched product gas was significantly affected by quenching operation, and the acetylene yield was significantly affected by quenching medium flow rate. The acetylene yields of 24.6, 17.8, 44.9 and 23.6 wt% can be reached by using hydrogen, argon, methane, and water as quenching media, respectively. The specific energy requirement analysis indicates that process energy efficiency can be improved by a suitable quench operation.  相似文献   

4.
A special bi-anode plasma torch that can change the anode arc root position without changing working gas flow rate has been developed to investigate the effect of anode arc root position on the behavior of the plasma jet. It has two nozzle-shaped anodes at different axial distances from the cathode tip. The arc root can be formed at anodes either close to the cathode tip (anode I) or far away from it (anode II) to obtain different attachment positions and arc voltages. The characteristics of pure argon plasma jets operated in different anode modes were measured in the field free region by using an emalpy probe, and the thermal efficiency of the torch was determined by measuring the temperature differences between cooling water flowing in and out of the torch. The results show that compared with the normal arc operated in anode I mode, the elongated arc operated in anode II mode significantly reduced the plasma energy loss inside the torch, resulting in a higher temperature and a higher velocity of the plasma jet in the field free region.  相似文献   

5.
A Computational Fluid Dynamics (CFD) model was formulated for DC arc hydrogen/argon plasma jet re-actors used in the process of the thermal H2/Ar plasma pyrolysis of coal to acetylene. In this model, fluid flow, convective heat transfer and conjugate heat conductivity are considered simultaneously. The error caused by estimating the inner-wall temperature of a reactor is avoided. The thermodynamic and transport properties of the hydrogen/argon mixture plasma system, which are usually expressed by a set of discrete da-ta, are fitted into expressions that can be easily implemented in the program. The effects of the turbulence are modeled by two standard k-ε equations. The temperature field and velocity field in the plasma jet reactor were calculated by employing SIMPLEST algorithm. The knowledge and insight obtained are useful for the design improvement and scale-up of plasma reactors.  相似文献   

6.
Modeling results are presented to compare the characteristics of laminar and turbulent argon thermal plasma jets issuing into ambient air. The combined-diffusion-coefficient method and the turbulence-enhanced combined-diffusion-coefficient method are employed to treat the diffusion of ambient air into the laminar and turbulent argon plasma jects, respectively. It is shown that since only the molecular diffusion mechanism is involved in the laminar plasma jet, the mass flow rate of ambient air entrained into the laminar plasma jet is comparatively small and less dependent on the jet inlet velocity. On the other hand, since turbulent transport mechanism is dominant in the turbulent plasma jet, the entrainment rate of ambient air into the turbulent plasma jet is about one order of magnitude larger and almost directly proportional to the jet inlet velocity. As a result, the characteristics of laminar plasma jets are quite different from those of turbulent plasma jets. The length of the high-temperature region of the laminar plasma jet is much longer and increases notably with increasing jet inlet velocity or inlet temperature, while the length of the high-temperature region of the turbulent plasma jet is short and less influenced by the jet inlet velocity or inlet temperature. The predicted results are reasonably consistent with available experimental observation by using a DC arc plasma torch at arc currents 80–250 A and argon flow rates (1.8–7.0)×10−4 kg/s.  相似文献   

7.
The authors recently developed a high-frequency pulsed plasma process for methane conversion to acetylene and hydrogen using a co-axial cylindrical (CAC) type of reactor. The energy efficiency represented by methane conversion rate per unit input energy has been improved so that such a pulsed plasma has potential for commercial acetylene production. A pulsed plasma consists of a pulsed corona discharge and a pulsed spark discharge. Most of energy is injected over the duration of the pulsed spark discharge. Methane conversion using this kind of pulsed plasma is a kind of pyrolysis enhanced by the pulsed spark discharge. In this study, a point-to-point (PTP) type of reactor that can produce a discharge channel over the duration of a pulse discharge was used for the pulsed plasma conversion of methane. The energy efficiency and carbon formation on electrodes have been improved. The influences of pulse frequency and pulse voltage on methane conversion rate and product selectivity were investigated. The features of methane conversion using PTP and CAC reactors were discussed.  相似文献   

8.
Measurements of composition, temperature, and velocity in atmospheric argon plasma jets are reported, using enthalpy probes. The plasma jets are generated by a commercial type plasma gun and the measurements are expected to be of particular interest for industrial applications such as plasma spraying. Emphasis has been on the central and downstream regions of the plasma flame. The entrainment of air into the jet was found to be very high, even close to the axis of the jet. Gas samples analyzed with a gas chromatograph showed demixing of the air, i.e., nitrogen is more abundant in the jet than at room temperature. The high air entrainment has a strong cooling effect on the plasma, resulting in a rapid temperature drop along the axis. The influence of the argon flow rate and of the arc current on the jet's conditions was parametrically studied. Matching of the quantities measured in the jet with the torch input confirmed the validity of the results, and the relevance of enthalpy probe diagnostics in thermal plasma jets.  相似文献   

9.
An experimental study is conducted to investigate the entrainment characteristics of a turbulent thermal plasma jet issuing from a DC arc plasma torch operating at atmospheric pressure. The mass flow rate of the ambient gas entrained into the turbulent plasma jet is directly measured by use of the so-called “porous-wall chamber” technique. It is shown that a large amount of ambient gas is entrained into the turbulent plasma jet. With the increase of the gas mass flow rate at the plasma jet inlet or the plasma torch exit, the mass flow rate of entrained ambient gas almost linearly increases but its ratio to the jet-inlet mass flow rate decreases. The mass flow rate of the entrained gas increases with the increase of the arc current or jet length. It is also found that using different ways to inject the plasma-forming gas into the plasma torch affects the entrainment rate of the turbulent plasma jet. The entrainment rate expression established previously by Ricou and Spalding (J. Fluid Mech. 11: 21, 1961) for the turbulent isothermal jets has been used to correlate the experimental data of the entrainment rates of the turbulent thermal plasma jet, and the entrainment coefficient in the entrainment rate expression is found to be in range from 0.40 to 0.47 for the turbulent thermal plasma jet under study.  相似文献   

10.
The non-transferred direct current (DC) plasma torch has been widely used in various industrial applications due to its special jet characteristics. The jet characteristics are determined by different factors, including the working parameters, the torch construction, the gas injection angle (GIA) etc. As there is little study on the influence of the GIA on the jet characteristics, experimental study on the GIA’s effects on the jet characteristics has been carried out on a specially designed non-transferred DC plasma torch, whose GIA can be changed by replacing a gas injection component. The arc voltages and thermal efficiencies of the plasma torch, the specific enthalpies and jet lengths of the plasma jets at different working conditions were obtained and analyzed. It has been found that the GIA greatly affects the arc voltage, the thermal efficiency, the specific enthalpy and the jet length. Based on these findings, plasma torch with appropriate GIA could be used to help generating the plasma jet with desired characteristics.  相似文献   

11.
微波复合直流等离子体转化天然气制乙炔的研究   总被引:4,自引:0,他引:4  
利用微波复合直流等离子体对天然气转化制乙炔反应进行了研究. 考察了氢烷比、气体流量、功率等参数对装置的能量利用率以及天然气转化反应的影响, 并考核了微波复合直流等离子体转化天然气制乙炔工艺的稳定性. 实验结果表明: 微波复合直流等离子体装置的能量利用率随等离子体工作气体的流量的增加而提高; 由于微波的作用使传统直流柱状等离子体分化为多根丝状等离子体, 从而使得电极的烧蚀方式由传统的点烧蚀变为面烧蚀, 并大幅度提高等离子体转化天然气工艺的稳定性和电极寿命; 甲烷的转化率和乙炔的收率随功率的增加而提高, 随CH4/H2比和气体流量的增加而降低, 在氢烷比为0.9、总气体流量为760 L/min、微波源输出电功率6 kW、直流电源输出功率90 kW时, 甲烷转化率可达84.4%, 乙炔选择性为75.6%, 乙炔收率为63.8%, 乙炔能耗达10.8 kWh•kg-1; 电极寿命超过200 h.  相似文献   

12.
A single-stage catalyst free synthesis of hydrogenated graphene was studied in the process of methane conversion in a helium plasma jet created by a plasma torch at the power up to 45 kW and the pressure of 710 Torr. The synthesis products were studied by the methods of scanning and transmission electron microscopy, thermal analysis, Raman spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction analysis.  相似文献   

13.
Optical Emission Spectroscopy (OES) was used to identify reactive species and their excitation states in low-temperature cascade arc plasmas of N2, CF4, C2F4, CH4, and CH3OH. In a cascade arc plasma, the plasma gas (argon or helium) was excited in the cascade arc generator and injected into a reactor in vacuum. A reactive gas was injected into the cascade arc torch (CAT) that was expanding in the reactor. What kind of species of a reactive gas, for example, nitrogen, are created in the reactor is dependent on the electronic energy levels of the plasma gas in the cascade arc plasma jet. OES revealed that no ion of nitrogen was found when argon was used as the plasma gas of which metastable species had energy less than the ionization energy of nitrogen. When helium was used, ions of nitrogen were found. While OES is a powerful tool to identify the products of the cascade arc generation (activation process), it is less useful to identify the reactive species that are responsible for surface modification of polymers and also for plasma polymerization. The plasma surface modification and plasma polymerization are deactivation processes that cannot be identified by photoemission, which is also a deactivation process. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1583–1592, 1998  相似文献   

14.
粒径对煤在H2/Ar等离子体中热解的影响   总被引:10,自引:1,他引:10  
对粒径在H2/Ar等离子体煤热解制乙炔中的影响进行了研究,得到了煤的粒径与煤的裂解程度(转化率)、乙炔收率、乙炔在产品气体中摩尔分数和反应器壁结焦的关系,并且在考虑各种因素的制约下,对如何选择最佳粒径和粒径分布的问题进行了讨论。根据煤等离子体热解制乙炔反应器壁结焦的机理和煤粒径是影响反应器内结焦的重要因素,提出了进料粒径双峰分布缓解煤等离子体热解制乙炔装置结焦的新方法,实验证明该方法可行。  相似文献   

15.
Pyrolysis of acetylene was investigated in a tubular reactor of graphite with an internal lining of alumina. The temperature range was 850–1650 °C, and the pressure was about 0.133 bar (100 Torr). Pure acetylene and acetylene diluted with argon or hydrogen were used as feed. Carbon and hydrogen are the main products from acetylene pyrolysis particularly at higher conversion. At lower conversion of acetylene, other gas products were formed; the amount of these depended on temperature, dilution, and conversion. Benzene and vinyl acetylene are the main gas products from pyrolysis of pure acetylene below 1000 °C and at low conversion. Diacetylene increases with increasing temperature. Dilution with hydrogen changes the composition of the gas product, decreases the selectivity of vinyl acetylene and benzene, and increases the formation of methane and ethylene. Gas‐phase equilibrium may be approached between some components. The conversion of acetylene with argon dilution and low conversion was found to be of second order. Pyrolysis of pure acetylene at lower temperature and low conversion gave the rate constant k = 3.1 × 109 · exp(?34.8/RT) L mol?1 s?1 with an activation energy of 34.8 kcal mol?1. The initial reaction at 864 °C is a molecular formation of vinyl acetylene. The initial activation of acetylene in gas phase seems to be rate determining and of second order in acetylene. Decomposition of acetylene can take place both homogeneously and heterogeneously. Above a critical partial pressure of acetylene, the decomposition is apparently explosive with instant plugging of the reactor with carbon.  相似文献   

16.
Hydrogenated graphene has been synthesized in one step by acetylene conversion in a helium plasma jet. A dc plasma torch with a diverging anode channel and a power up to 45 kW has been used to generate plasma. The obtained graphene materials have been studied by scanning electron microscopy, Raman spectroscopy, and elemental analysis. Hydrogen desorption from the samples synthesized has been studied by thermal analysis as a function of temperature. It has been found that during annealing in vacuum, the synthesis products change their morphology because of hydrogen release.  相似文献   

17.
Reactions of methane with water and CO2 in thermal plasma generated in a special plasma torch with a water-stabilized arc were investigated. Steam plasma with very high enthalpy and low mass flow rate was produced in a dc arc discharge which was in direct contact with water vortex surrounding the arc column. Composition of produced gas, energy balance of the process and its efficiency were determined from measured data. The output H2/CO ratio could be adjusted by a choice of feed rates of input reactants in the range 1.1–3.4. Depending on experimental conditions the conversion of methane was up to 99.5%, the selectivity of H2 was up to 99.9%, and minimum energy needed for production of 1 mol of hydrogen was 158 kJ/mol. Effect of conditions on process characteristics was studied. Comparison of measured data with results of theoretical computations confirmed that the reforming process produces gas with composition which is close to the one obtained from the thermodynamic equilibrium calculations. Relations between process enthalpy, composition of produced syngas and process characteristics were determined both theoretically and experimentally.  相似文献   

18.
The generation, jet length and flow-regime change characteristics of argon plasma issuing into ambient air have been experimentally examined. Different torch structures have been used in the tests. Laminar plasma jets can be generated within a rather wide range of working-gas flow rates, and an unsteady transitional flow state exists between the laminar and turbulent flow regimes. The high-temperature region length of the laminar plasma jet can be over an order longer than that of the turbulent plasma jet and increases with increasing argon flow rate or arc current, while the jet length of the turbulent plasma is less influenced by the generating parameters. The flow field of the plasma jet has very high radial gradients of plasma parameters, and a Reynolds number alone calculated in the ordinary manner may not adequately serve as a criterion for transition. The laminar plasma jet can have a higher velocity than that of an unsteady or turbulent jet. The long laminar plasma jet has good stiffness to withstand the impact of laterally injected cold gas and particulate matter. It could be used as a rather ideal object for fundamental studies and be applied to novel materials processing due to its attractive stable and adjustable properties.  相似文献   

19.
Direct current (dc) plasma torch with inter-electrode inserts has the merits of fixed arc length, relative high enthalpy and may show advantages in future plasma processes where stability and controllability are must-have. Energy fluctuations in the plasma may result from power supply ripple, arc length variation, and/or acoustic oscillation. Using an improved power supply with a flat waveform, the characteristics of an argon plasma energy instabilities under reduced pressure were studied by means of simultaneously monitoring the arc voltage and arc current spectrum. Dependence of the arc fluctuation behavior on the plasma generating parameters, such as the current intensity, the plasma gas flow rates and the vacuum chamber pressure were investigated and discussed. Results show that the plasma torch has a typical U-shaped voltage-ampere characteristic (VAC). The correlation between the VAC and the probability of energy distributions was studied. Through pressure measurements at the cathode cavity and the vacuum chamber, the existence of sonic flow in the inter-electrode insert channel was confirmed.  相似文献   

20.
Kinetic Modeling of Plasma Methane Conversion Using Gliding Arc   总被引:3,自引:0,他引:3       下载免费PDF全文
Plasma methane (CH4) conversion in gliding arc discharge was examined. The result data of experiments regarding the performance of gliding arc discharge were presented in this paper. A simulation which is consisted some chemical kinetic mechanisms has been provided to analyze and describe the plasma process. The effect of total gas flow rate and input frequency refers to power consumption have been studied to evaluate the performance of gliding arc plasma system and the reaction mechanism of decomposition.Experiment results indicated that the maximum conversion of CH4 reached 50% at the total gas flow rate of 1 L/min. The plasma reaction was occurred at the atmospheric pressure and the main products were C (solid), hydrogen, and acetylene (C2H2). The plasma reaction of methane conversion was exothermic reaction which increased the product stream temperature around 30~50℃.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号