首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spin-lattice relaxation times T1 and T as well as 1H NMR spectra have been employed to study the dynamics of the glass-forming di-isobutyl phthalate in the temperature range extending from 100 K, through the glass transition temperature Tg, up to 340 K. Below Tg NMR relaxation is governed by local dynamics and may be attributed to rotation of methyl groups at low temperatures and to motion of isobutyl groups in the intermediate temperature interval. Above Tg the main relaxation mechanism is provided by overall molecular motion. The observed relaxation behavior is explained by motional models assuming asymmetrical distributions of correlation times. The motional parameters obtained from Davidson-Cole distribution, which yields the best fit of the data at all temperatures are given.  相似文献   

2.
Spin–lattice relaxation times T1 in solid pregnenolone have been studied over a wide range of temperatures, from 77 up to 417 K. The dynamic processes arising from C3 motion of the three methyl substituents are separated, and their activation parameters are determined.  相似文献   

3.
Molecular dynamics of polycrystalline cellobiose studied by solid-state NMR   总被引:1,自引:0,他引:1  
Molecular motions of polycrystalline cellobiose have been investigated by measuring proton spin–lattice relaxation times, T1 and T, and the second moment, M2, in both protonated and D2O exchanged forms over the temperature range 120–380 K. T1 relaxation is dominated by the motions of hydroxyl groups between 150 and 380 K, characterised by an activation energy of about 8.74 kJ/mol, whereas T relaxation is driven by the motions of the same groups between 120 and 300 K. T results suggest that hydroxyl groups have a distribution of dynamics. Motion of methylene groups was detected in the second-moment experiments at about 350 K, characterised by activation energy of about 40 kJ/mol. Consideration of the calculated and observed rigid-lattice second moments suggests that the reported X-ray data are incorrect for the inter-proton distance on C6′. 13C CPMAS spectra of both protonated and deuterated cellobiose have also been measured. Spectra of the deuterated material showed the existence of a second crystalline form in addition to the normal form.  相似文献   

4.
The use of nuclear magnetic resonance (NMR) relaxation time measurements for characterization of abnormal cardiac tissue depends upon knowledge of variations of relaxation times of normal myocardium and determinants of these variations. We calculated in vitro NMR T1 and T2 relaxation times of canine myocardium from the four cardiac chambers, and determined hydroxyproline concentration (as a measure of collagen) and percent water content of the samples. We found both water content and T1 relaxation time of the right ventricle to be significantly greater than the left atrium (p < 0.05). T2 relaxation time of the left ventricle was found to be shorter than each of the other three chambers (p < 0.05). There were significant correlations between the spin-lattice relaxation time and both percent water content (r = 0.58) and hydroxyproline concentration (r = 0.45). A significant correlation was also found between T2 relaxation time and hydroxyproline concentration (r = 0.49). When T1 and T2 were adjusted for water and hydroxyproline content, there was no longer any evidence for significant interchamber differences for either T1 or T2. These data suggest that differences in NMR relaxation times exist among the four chambers of the normal canine heart. Furthermore, a major determinant of myocardial spin-lattice relaxation time is tissue water content while both collagen content and percent water content significantly contribute to variability in cardiac chamber T2 relaxation times.  相似文献   

5.
Spin-lattice relaxation times T1 and T are determined for protons in three polycrystals (CH3NH3)5Bi2Cl11, (CD3NH3)5Bi2Cl11 and (CH3ND3)5Bi2Cl11. The temperature dependencies of the relaxation times obtained for (CH3NH3)5Bi2Cl11 and (CD3NH3)5Bi2Cl11 are interpreted as a result of correlated motions of the three-proton groups of the monomethylammonium cation. The minimum of the T relaxation time is explained as a result of the oscillations of the symmetry axis of the whole cation.  相似文献   

6.
An assumption made in using excised tissue for in vitro nuclear magnetic resonance (NMR) studies is that variables of interest, such as spin-lattice (T1) relaxation times, remain stable for periods of time after excision sufficient to perform NMR spectroscopy. In this study, we evaluated the changes in T1 of rat myocardium, measured at two NMR field strengths, at serial time intervals up to 72 hours postmortem. Left ventricular myocardium from six male Sprague-Dawley rats was excised and stored at room temperature in sealed NMR sample tubes. Spin-lattice relaxation times were determined with a modified inversion-recovery pulse sequence immediately postmortem and at intervals up to 72 hours post-excision; NMR studies were performed using 90 MHz and 360 MHz spectrometers. A gradual decrease in T1 was noted with increasing time post-excision; T1 was not significantly shorter than baseline until 72 hours postmortem at either field strength. The rate of change of T1 was similar at the two field strengths. At any given time post-excision, T1 was significantly higher (p < 0.001) at 360 MHz than at 90 MHz. We conclude that, with proper tissue handling and storage techniques, rat myocardial T1 is stable postmortem sufficiently long to permit meaningful NMR studies of excised tissue.  相似文献   

7.
Wideline 1H FID and relaxation measurements of a relatively simple motionally heterogeneous system, the triblock copolymer styrene–butadiene–styrene, have been performed in a temperature range between the polystyrene and polybutadiene glass transition temperatures. The two FID and the two spin lattice relaxation time in the rotating frame (T1ρ) components found at each temperature have been correlated by means of a two-dimensional approach. It is shown that this approach allows dynamic information, not accessible simply by interpreting proton T1 and T1ρ data, to be revealed. In the case examined, the correlation found could be confirmed by high-resolution 1H T1ρ-selective 13C Cross Polarization experiments.  相似文献   

8.
The spin-lattice relaxation times T1 of 1H and 29Si spins in talc have been measured at room temperature with and without magic-angle spinning (MAS) of the sample. Paramagnetic impurities work as relaxation centers. 1H T1 depends on the spinning rate, whereas 29Si T1 is independent of the spinning rate. These facts demonstrate that spin diffusion plays an important role in 1H relaxation but not in 29Si relaxation. 29Si spins relax through dipole-dipole interactions with electron spins directly, which mechanism is not affected by spinning. The relaxation rates have been analyzed theoretically.  相似文献   

9.
The importance of spin density [N(H)] and spin-lattice (T1) and spin-spin (T2) relaxation in the characterization of tissue by nuclear magnetic resonance (NMR) is clearly recognized. This work considers which optimized pulse sequences provide the best tissue discrimination between a given pair of tissues. The effects of tissue spin density and machine-imposed minimum rephasing echo times (TEMIN) for achieving maximum signal tissue contrast are discussed. A long TEMIN sacrifices T1-dependent contrast in saturation recovery (SR) and inversion recovery (IR) pulse sequences so that spin-echo (SE) becomes the optimum sequence to provide tissue contrast, due to T2 relaxation. Pulse sequences providing superior performance may be selected based on spin density and T1 and T2 ratios for a given pair of tissues. Selection of the preferred pulse sequence and interpulse delay times to produce maximum tissue contrast is strongly dependent on knowledge of tissue spin densities as well as T1 and T2 characteristics. As the spin density ratio increases, IR replaces SR as the preferred sequence and SE replaces IR and SR as the pulse sequence providing superior contrast. To select the optimal pulse sequence and interpulse delay times, an accurate knowledge of tissue spin density, T1 and T2 must be known for each tissue.  相似文献   

10.
Serial MR scans were performed with the 2DFT imaging method and the filtered backprojection imaging method on 12 patients with multiple sclerosis in acute phase, 4 in a relapsing/remitting form, and 8 in a progressive form, before, during and after ACTH treatment. Both T1 and T2mono relaxation times, obtained by fitting transverse magnetization decay curves with a monoexponential function within the apparently normal white matter and the areas of increased signal, were measured. With the backprojection method it was possible to fit the transverse magnetization decay curve with a biexponential function and obtain T2long and T2short relaxation times. The T2mono and T1 relaxation times of the apparently normal white matter were significantly different from those obtained for volunteers, but no significant differences were found before, during, or after treatment. The transverse magnetization decay curves of the areas of increased signal were better fitted by a biexponential function. No significant changes in these relaxation times were observed after ACTH treatment. These results argue against an anti-oedematous action of ACTH and may suggest that it has an immunosuppressant effect.  相似文献   

11.
Nuclear magnetic resonance (NMR) longitudinal (T1) and transverse (T2) relaxation parameters have been evaluated for protein solutions, cellular suspensions and tissues using both data from our laboratory and the extensive literature. It is found that this data can be generalized and explained in terms of three water phases: free water, hydration water, and crystalline water. The proposed model which we refer to as the FPD model differs from similar models in that it assumes that free and hydration water are two phases with distinct relaxation times but that T1 = T2 in each phase. In addition there is a single correlation time for each rather than a distribution as assumed in most other models. Longitudinal decay is predicted to be single exponent in character resulting from a fast exchange between the free and hydration compartments. Transverse decay is predicted to be multiphasic with crystalline (T2 10 μsec), hydration (T2 10 sec) and free (T2 100 sec) water normally visible. The observed or effective transverse relaxation times for both the hydration and free water phases are greatly affected by the crystalline phase and are much shorter than the inherent relaxation times.  相似文献   

12.
13C及29Si核磁共振研究了苯乙烯(S)及二甲基硅氧烷(Si)嵌段共聚物中硅氧烷软段的固体及溶液谱的自旋-晶格弛豫时间T1。固态嵌段共聚物主链29Si及侧甲基13C的T1都与均聚物的T1相近,但在CdCl3溶液中各种嵌段共聚物的T1与均聚硅氧烷相差颇大。用偶极-偶极相互作用来解释高聚物的自旋-晶格弛豫。苯乙烯-二甲基硅氧烷嵌段共聚物具两相结构,所以嵌段共聚物中软段及硬段微区中链段的运动与在均聚物分子中链段的运动模式基本相同。而CdCl3对聚苯乙烯或聚硅氧烷都是良溶剂,软段硬段之间有相互影响。所以其链段运动与均聚物不同,从而导致链段运动的相关时间τc变短和T1的增长。  相似文献   

13.
Crystalline 2,3-dicyano-5,7-dimethyl-6H-1,4-diazepine (A) was investigated by solid-state NMR spectroscopy, X-ray diffraction, and spectral simulations. The solid-state 13C NMR spectra of A display peculiar splittings for the methyl and cyano resonances. The crystal structure of A indicates that the methyl doublet is a consequence of two crystallographically inequivalent environments. The methyl motions associated with each site was examined via spin-lattice relaxation time (T1) measurements, and the carbon relaxation times (T1C) were used to calculate energy barriers to methyl rotation. The energy barriers to rotation were then used to correlate each methyl 13C shift with a particular crystallographic environment. The complex cyano splittings, however, are a result of both crystallographic inequivalence and residual 13C–14N dipolar coupling. The multiplet patterns of the isotropic shifts (centerbands) are dependent upon the magic-angle spinning (MAS) rate. Spectral simulations, using the perturbation method, of the centerbands and first-order sidebands were used to demonstrate, and elucidate, the observed MAS rate-dependent multiplet patterns of the cyano signals.  相似文献   

14.
Solid state proton Zeeman relaxation rate R1z measurements in two isomers of an organic solid (1- and 2-ethylnaphthalene) are reported. The samples are liquids at room temperature and the temperature T and Larmor frequency ω dependence of R1z depends strongly on how the sample is solidified. Methyl group (CH3) rotation is responsible for the proton spin relaxation and the methyl groups serve as probes of the local environment. The R1z measurements clearly distinguish between different solid states due to the differences in local structure at the several-molecule level. The experiments cannot be used to determine the states of these Van der Waals solids although interpreting the relaxation rate data suggests the states are unusual. We propose that these systems might exist in two (2-ethylnaphthalene) or more (1-ethylnaphthalene) polycrystalline polymorphs or that we are observing distinguishable glassy states, or, both. A phase transition is observed in 1-ethylnaphthalene. Variable temperature X-ray studies of organic systems that solidify well below room temperature are difficult, or at least not routine, and proton spin relaxation measurements serve as a convenient starting point for investigating such systems.  相似文献   

15.
The solid state 13C CPMAS NMR spectra of plant cell walls are often complex owing to superposition of resonances from different polysaccharides and the heterogeneity of the cell wall assembly. In this paper, we describe the application of a set of proton relaxation-induced spectral editing (PRISE) experiments which combine 1H relaxation properties (T1, T, T2) with 13C high resolution spectroscopy (CPMAS) to relate the dynamics of the plant cell walls and model systems to their domain structural details. With PRISE it has been found that in plant cell wall materials, cellulose is always associated with the long components of spin–lattice relaxation in both the laboratory and rotating frames whereas non-cellulose polysaccharides (pectin and hemicellulose) are associated with the short ones. For the proton T2 relaxation, cellulose is only associated with the short component (below 20 μs), pectin contributes to both the short component and the long one.  相似文献   

16.
Experimental gliomas (F98) were inoculated in cat brain for the systematic study of their in vivo T2 relaxation time behavior. With a CPMG multi-echo imaging sequence, a train of 16 echoes was evaluated to obtain the transverse relaxation time and the magnetization M(0) at time T = 0. The magnetization decay curves were analyzed for biexponentiality. All tissues showed monoexponential T2, only that of the ventricular fluid and part of the vital tumor tissue were biexponential. Based on these NMR relaxation parameters the tissues were characterized, their correct assignment being assured by comparison with histological slices. T2 of normal grey and white matter was 74 ± 6 and 72 ± 6 msec, respectively. These two tissue types were distinguished through M(0) which for white matter was only 0.88 of the intensity of grey matter in full agreement with water content, determined from tissue specimens. At the time of maximal tumor growth and edema spread a tissue differentiation was possible in NMR relaxation parameter images. Separation of the three tissue groups of normal tissue, tumor and edema was based on T2 with T2(normal) < T2(tumor) < T2(edema). Using M(0) as a second parameter the differentiation was supported, in particular between white matter and tumor or edema. Animals were studied at 1–4 wk after tumor implantation to study tumor development. The magnetization M(0) of both tumor and peritumoral edema went through a maximum between the second and third week of tumor growth. T2 of edema was maximal at the same time with 133 ± 4 msec, while the relaxation time of tumor continued to increase during the whole growth period, reaching values of 114 ± 12 msec at the fourth week. Thus, a complete characterization of pathological tissues with NMR relaxometry must include a detailed study of the developmental changes of these tissues to assure correct experimental conditions for the goal of optimal contrast between normal and pathological regions in the NMR images.  相似文献   

17.
Localized water suppressed proton spectroscopy has opened up a new field of pathophysiological studies of severe brain ischemia. The signals obtained with the pulse sequences used so far are both T1 and T2 weighted. In order to evaluate the extent to which changes in metabolite signals during the course of infarction can be explained by changes in T1 and T2 relaxation times, eight patients with acute stroke were studied. STEAM sequences with varying echo delay times and repetition times were used to measure T1 and T2 of N-acetyl-aspartate (NAA), creatine plus phosphocreatine (Cr+PCr) and choline containing compounds (CHO) in a 27-ml voxel located in the affected area of the brain. Ten healthy volunteers served as controls. We found no difference in T1 or T2 of the metabolites between the patients and the normal controls. The T2 of CHO was longer than that of NAA and Cr+PCr. Our results indicate that spectra obtained in brain infarcts and normal tissue with the same acquisition parameters are directly comparable with respect to relative signal intensities as well as signals scaled with internal and external standards.  相似文献   

18.
NMR relaxation time distributions, obtained with laboratory and portable devices, are utilized to characterize the pore-size distributions of building materials coming from the Roman remains of the Greek-Roman Theatre of Taormina. To validate the interpretation of relaxation data in terms of pore-size distribution, comparison of results from standard and in situ NMR experiments with results of the mercury intrusion porosimetry (MIP) has been made. Although the pore-size distributions can be obtained by NMR in terms of either longitudinal (T1) or transverse (T2) relaxation times distributions, the shorter duration of the T2 measurement makes it, in principle, preferable, although the determination of T2 distributions is not necessarily an easy alternative to finding T1 distributions. Among other things, the T1 distribution is almost independent of the inhomogeneity of the magnetic field, while the T2 distribution is strongly influenced by it. This paper was aimed at answering two questions: what are the validity limits to interpret NMR data in terms of pore-size distributions and whether the portable device can successfully be applied as a non-destructive and non-invasive tool for in situ NMR analysis of building materials, particularly those of Cultural Heritage interest.  相似文献   

19.
We studied mouse liver, heart and kidney for possible diurnal fluctuations of T1 and T2. In a subgroup of animals, we attempted to relate T1 and T2 of the organ samples to their water and lipid content (and in the liver, also to glycogen content). Diurnal periodic fluctuation was found only in liver T2 and was of a very minor degree. Regression analysis of organ T2 estabilished relationships with chemical composition which explained 25%–40% of the observed variation in T2. No relationship with T1 could be established.  相似文献   

20.
We have prepared Zn-substituted YBa2Cu3−xZnxO7 (YBCO, x=0.0–0.09) and performed 63,65Cu nuclear quadrupole resonance (NQR) measurements for the plane site at 300 and 100 K as a function of Zn concentration. The substitutional effects are observed in resonant frequencies and linewidths of spectra, and relaxation times as well as in the superconducting transition temperature. The spin–lattice relaxation rate 1/T1 is reduced for the higher Zn concentration and the reduction is more significant at 100 K. The ratio of 63,65Cu spin–lattice relaxation rates suggests that a magnetic contribution due to the antiferromagnetic spin fluctuation becomes weak as the Zn concentration increases. These effects confirm that the antiferromagnetic spin fluctuation of Cu 3d spins is suppressed by the Zn substitution due to the absence of local moment at the zinc site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号