首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ultra-thin epitaxial Fe films grown by thermal deposition on Cu(100) are analyzed by scanning tunneling microscopy. Evidence is presented that the morphological characteristics and magnetic properties are a direct consequence of FCC-to-BCC transitions reminiscent of those occurring in bulk Fe. In contrast to the assumption of a ferromagnetic FCC phase in previous models of the Fe/Cu(100) system, we observe a tightly twinned and strained BCC-like phase termed nanomartensite in films below 5 ML thickness, which encompasses almost the entire film volume of 3 ML films. In addition, the surface of 7–8 ML films reconstructs by forming non-close-packed structures with BCC-like bond angles. The formation of these BCC-like phases is the reason for the expansion of the interlayer spacing observed in these films and correlates perfectly with their ferromagnetic ordering. PACS 68.55.-a; 64.70.-p; 81.30.-t  相似文献   

2.
The magnetic properties of epitaxial iron films up to 80 monolayers (ML) thickness grown on Si(0 0 1) by using a template technique were investigated by means of superconducting quantum interference device and magneto-optic Kerr effect techniques. The thinnest films investigated (∼3 ML) exhibit a composition close to Fe3Si with a Curie temperature below room temperature (RT) and strong out-of-plane remanent magnetization that reflects the presence of a dominant second order surface anisotropy term. Thicker films (⩾4 ML) are ferromagnetic at RT with remanent magnetization in film-plane and a composition closer to pure Fe with typically 8–10% silicon content. When deposited at normal incidence such films show simple in-plane fourfold anisotropy without uniaxial contribution. The relevant fourth-order effective anisotropy constant K4eff was measured versus film thickness and found to change its sign near 18 ML. The origin of this remarkable behavior is investigated by means of a Néel model and mainly traced back to fourth-order surface anisotropy and magneto-elastic effects related to the large biaxial in-plane compressive strain up to 3.5% in the thinnest (⩽25 ML) films.  相似文献   

3.
为了实现超声探伤和应力发光探伤二者结合,研究了SrAl_2O_4∶Eu,Dy(SAOED)/硅橡胶在超声振动下的应力发光性质。薄膜的微观结构表明,SrAl_2O_4∶Eu,Dy应力发光颗粒被高弹性的硅胶包裹。当超声波作用到薄膜表面时,超声振动可以促使应力发光颗粒周围的硅橡胶发生各种形变,从而使被包裹的应力发光颗粒发生有效形变,产生高效的应力发光。薄膜厚度以及超声频率对SAOED发光薄膜的应力发光有明显的影响。薄膜的超声应力发光强度随着薄膜厚度的增加先增大,当薄膜的厚度为1 mm时达到最大,之后随着薄膜厚度的增加而降低。薄膜的超声应力发光强度与超声频率大小成正比,即使最低频率仅为500 Hz时仍能检测到信号,说明SrAl_2O_4∶Eu,Dy/硅橡胶发光薄膜是一种很有应用前途的无损检测传感器。  相似文献   

4.
We report the results from a series of experiments in which ferromagnetic thin films were used as atom mirrors for laser-cooled rubidium atoms released from a magneto-optical trap. The thin films were made of cobalt and lanthanum calcium manganite (LCMO) with thicknesses between 20 and 300 nm. The magnetic domains in these thin films have a periodic structure where the spatial period is of the order of the thickness of the film, and the field decays exponentially above the film over a length scale comparable to the domain size. Thus, the neutral atoms reflect off these films from distances comparable to the thickness of the film, resulting in modification of the reflectivity due to the competition between the repulsive magnetic force and the attractive short-range forces such as van der Waals and Casimir forces. The smoothness of the atom mirror is also modified due to the proximity of the magnetic domains. The reflectivity is sensitive to the domain structure and size, which can be modified in LCMO by applying a modest external magnetic field. In this paper, we discuss the evaluation of the thin films as magnetic mirrors for atom optics, and the measurement of the van der Waals force with an accuracy of about 15%, using cobalt thin films. We also discuss some preliminary results on the temperature-dependent reflectivity for atoms near the ferromagnetic transition at 250 K in the LCMO film, and on the domain dynamics and relaxation.  相似文献   

5.
The evolution of the properties of ordered nickel films with thicknesses increasing from one to three atomic monolayers (ML) adsorbed on the W(110) single crystal surface is studied under ultrahigh vacuum conditions by the methods of reflection-absorption infrared spectroscopy (RAIRS) and ultraviolet photoelectron spectroscopy (UPS). The film structure corresponds to that of the Ni(111) single crystal face. The RAIRS technique is used to study the vibrational properties of the probing NO molecules adsorbed on the nickel films studied. In the course of the nickel film growth, whereby its thickness increases from 1 to 3 ML, both the vibrational and photoelectron spectra exhibit significant variation, which is indicative of a change in the adsorption and electron properties of the film. Stabilization of the IR and photoelectron spectra at a film thickness of 3 ML indicates that this thickness corresponds to the formation of the main adsorption and electron properties of the deposit. At the same time, the vibrational spectra of NO molecules adsorbed on a monoatomic nickel film exhibit features typical of adsorption on the W[110] surface of a massive tungsten crystal.  相似文献   

6.
In this study, the influence of film thickness on the first-order martensite–austenite phase transformation of Ni–Mn–Sn ferromagnetic shape memory alloy thin films has been systematically investigated. Different thicknesses of the Ni–Mn–Sn films (from ~100 to 2,500 nm) were deposited by DC magnetron sputtering on Si (100) substrates at 550 °C. X-ray analysis reveals that all the films exhibit austenitic phase with the L21 cubic crystal structure at room temperature. The grain size and crystallization extent increase with the increase in film thickness, but the films with thickness above ~1,400 nm show structural deterioration due to the formation of MnSn2 and Ni3Sn4 precipitates. The improvement in the crystallinity of the film with thickness is attributed to the decrease in film–substrate interfacial strain resulting in preferred oriented growth of the films. Temperature-dependent magnetization measurements as well as electrical measurements demonstrate the complete absence of phase transformation for the film of thickness of ~120 nm. For thickness greater than 400 nm, film exhibits the structural transformation, and it occurs at higher temperature with better hysteresis as film thickness is increased up to ~1,400 nm, after which degradation of phase transformation phenomenon is observed. This degradation is attributed to the disorders present in the films at higher thicknesses. Film with thickness ~1,400 nm possesses the highest magnetization with the smallest thermal hysteresis among all the films and therefore best suited for the actuators based on first-order structural phase transformation. Nanoindentation measurements reveal that the higher values of hardness and elastic modulus of about 5.5 and 215.0 GPa obtained in film of 1,014 nm thickness can considerably improve the ductility of ferromagnetic shape memory alloys (FSMA) and their applicability for MEMS applications. The exchange bias phenomenon is also found to be present in the films of thickness 1014, 1412, and 2022 nm exhibiting prominent martensitic transformation. Film of thickness 2,022 nm exhibits maximum exchange bias of ~50 Oe and higher exchange bias blocking temperature of 70 K as compared to other films.  相似文献   

7.
For circular Bloch lines (° of Fig. 1) in ferromagnetic thin films the structure (Fig. 2) and the energy (Fig. 5) have been calculated. The radius of the region in which the magnetization is tilted considerably out of the film plane, depends only weakly on the film thickness and has the order of 100 Å for 80/20 nickel-iron films (Fig. 4). This region is surrounded by a circularly magnetized region. The transition to the noncircular configuration of the walls and domains takes place at an essentially higher radius (Fig. 6).  相似文献   

8.
The variations of electronic and magnetic properties of ultrathin Fe overlayers on a W(001) surface as a function of Fe film thickness (1.0–4.0 ML) has been investigated using X-ray magnetic circular dichroism (XMCD) in conjunction with ultraviolet photoelectron spectroscopy (UPS) and low energy electron diffraction (LEED). We found that the ferromagnetic property of Fe film started to build up over 2.0 ML, as we confirmed the spin and angular moment contribution to the magnetic moment using XMCD experiments. We also confirmed that a thermally stable layer is over 2.0 ML of Fe film as we change the annealing temperature taken after Fe deposition at 300 K and at 400 K using UPS. We will systematically demonstrate that the occurrence of ferromagnetic property of Fe film on a W(001) surface is closely correlated to a thermally stable layer of Fe film on a W(001) surface.  相似文献   

9.
The growth and structure of Co ultra-thin films on Pd(111) and Cr on Co/Pd(111) have been analyzed by grazing incidence X-ray diffraction and low energy electron diffraction. It is shown that the in-plane lattice constant of the epitaxial Co film depends on the growth temperature. Although the strain decreases as a function of the Co film thickness, it persists for 20 monolayer (ML) films or even thicker. When Cr is deposited at room temperature on a strained Co film (10 to 20 ML thick) a Kurdjumov–Sachs epitaxial relationship is observed, whereas when Cr is deposited on a Co(0001) single-crystal or on a very thick Co film on Pd(111), a Nishyama–Wassermann orientation is obtained.  相似文献   

10.
Ultrathin Co–Pt alloy films as substrate were studied by the surface magneto-optical Kerr effect. As the growth of Ni, the films show uniquely high polar Kerr responses without any in-plane signals. The coercivity decreased until the thickness of Ni film was higher than 5 ML. A new surface structure was discovered at 7–10 ML Ni/Co–Pt films by the low-energy electron diffraction. Interestingly, polar Kerr signal and coercivity of the 10 ML Ni/Co–Pt(1 1 1) template film reduced rapidly as Co films were further deposited onto only about 1–2 ML. Then the films show a canted magnetization with a rollback hysteresis in the polar configuration during the growth of Co. Coercivity of the 7 ML Co/Ni/Co–Pt film was found unusually down to almost 100 Oe.The corresponding magic number at around 7 ML of Co in the abnormal reduction of coercivity may be attributed to the cluster formations of Co.  相似文献   

11.
R. Opitz  S. L  bus  A. Thissen  R. Courths 《Surface science》1997,370(2-3):293-310
We report a study of the growth and structure of Fe films on Au(001) at room temperature using angle-resolved photoelectron spectroscopy (ARXPS, AlK) and polar-scan photoelectron diffraction (XPD, AlK), exploiting the forward scattering (FS) enhancement of photoelectrons along atomic chains. The structure of the Fe 3p and 2p XPD polar diagrams and the development of the FS features with film growth evidence that Fe grows pseudomorphically in a nearly perfect layer-by-layer mode with bcc (001) structure rotated by 45° about the surface normal. At least up to 4 and probably up to 6 monolayers Fe, a segregated Au monolayer (surfactant layer) exists on top of the Fe film. This follows from the comparison of a simple model for the development of the substrate and film FS enhancements with the experimental data. By using angular shifts of the Fe 3p and Fe 2p bcc-[111] and bcc-[101] FS peaks we could determine the Au(on top)---Fe and Fe---Fe interlayer distances for 1 and 2 ML thick films to be 1.71(0.04) Å and 1.48(0.08) Å, respectively, showing that very thin films have a slightly expanded bcc structure (bct). The regular bcc angle positions are observed above 4–6 ML.  相似文献   

12.
运用溶胶-凝胶法在Pt/Ti/SiO2/Si基片上旋涂制备了2-2型CoFe2O4/Pb(Zr0.53Ti0.47)O3磁电复合薄膜.制备的磁电薄膜结构为基片/PZT/CFO/PZT*/CFO/PZT,通过改变中间层PZT*溶胶的浓度,改变磁性层间距以及静磁耦合的大小.SEM结果表明,复合薄膜结构致密,呈现出界面清晰平整的多层结构.制备的复合薄膜具有较好的铁电与铁磁性能.实验还研究了静磁耦合对薄膜磁电性能的影响,结果表明,随着复合薄膜磁性层间距的减小,静磁耦合效应的增加,磁电电压系数有逐渐增大的趋势.  相似文献   

13.
The temperature-induced desorption of adsorbed overlayer films with thicknesses between 4 and 200 ML off a suddenly heated metal substrate is studied using molecular-dynamics simulation. We observe that the rapid heating vaporizes the surface-near part of the overlayer film. The initial heating-induced thermoelastic pressure and the vapor pressure in the vapor film drive the remaining film as a large relatively cold cluster away from the surface. In our simulations, the material present in the developing vapor film amounts to roughly 2 ML and is quite independent of the overlayer film thickness. For cluster thicknesses beyond 40 ML, the desorption time increases only little with film thickness, while the resulting cluster velocity decreases only slightly.  相似文献   

14.
The well-known fact of magnetic ordering in ultrathin Co films (with an effective thickness of several monoatomic layers) on a single-crystal Cu(110) substrate is described quantitatively using the model according to which the thin film is a lattice of three-dimensional ferromagnetic grains with dipole-dipole interactions. The critical film thickness corresponding to the ferromagnetic transition and the corresponding Curie temperature were calculated.  相似文献   

15.
Co-films of a few atomic layers were prepared as Mössbauer-source films, containing 1% 57Co, by evaporation on freshly prepared Cu-films. As the preparation was done in analogy to former work on oligatomic Co(111)-films (flat single-crystal films of few atomic layers), the films are expected to form a flat single crystal structure, to a good approximation. Two sections of a large area film were measured by magnetometry and Mössbauer spectrometry, one consisting of 2, the other of 4 atomic layers (mean thickness). Both showed common ferromagnetic hysteresis. The Mössbauer-spectrum of the 2-layers film consisted of one ferromagnetic sextet with a hyperfine field Hrmn = 262 KOe (at 4 K), superimposed by a weak doublet. indication was found for magnetic “Dead Layers”.  相似文献   

16.
Inverse photoemission spectra were taken for thin epitaxial iron films on Cu(100). For a film thickness of eight monolayers the observed electronic states are characteristic for a fcc(100) surface. Thed-bands of iron show a ferromagnetic exchange splitting of 1.1 eV, considerably smaller than the bulk value of 1.8 eV, which we observe for film thicknesses above 18 monolayers.  相似文献   

17.
《Current Applied Physics》2015,15(3):194-200
BiFeO3 (BFO) thin films with thickness increasing from 40 to 480 nm were successfully grown on LaNiO3 (LNO) buffered Pt/Ti/SiO2/Si(100) substrate and the effects of thickness evolution on magnetic and ferroelectric properties are investigated. The LNO buffer layer promotes the growth and crystallization of BFO thin films. Highly (100) orientation is induced for all BFO films regardless of the film thickness together with the dense microstructure. All BFO films exhibited weak ferromagnetic response at room temperature and saturation magnetization is found to decrease with increase in film thickness. Well saturated ferroelectric hysteresis loops were obtained for thicker films; however, the leakage current dominated the ferroelectric properties in thinner films. The leakage current density decreased by three orders of magnitude for 335 nm film compared to 40 nm film, giving rise to enhanced ferroelectric properties for thicker films. The mechanisms for the evolution of ferromagnetic and ferroelectric characteristics are discussed.  相似文献   

18.
Formation of the Eu/Si(111) system as the metal layer thickness gradually increases from 0.5 to 60 monolayers (ML) deposited on the silicon surface at room temperature, and after heating at up to 900 °C, has been studied by Auger electron spectroscopy, electron-energy-loss spectroscopy, and low-energy-electron diffraction. It is shown that room-temperature film growth passes through three stages, depending on the Eu layer thickness: metal chemisorption, interdiffusion of the metal and substrate atoms, and buildup of the metal on the surface of the system. Heating of ultrathin (about one ML) Eu films deposited at room temperature results in ordering of metal atoms on the silicon surface with only weak interaction. Heating thick (above 15 ML) Eu layers on the silicon surface produces silicides whose structure depends on the heating temperature. Fiz. Tverd. Tela (St. Petersburg) 40, 562–567 (March 1998)  相似文献   

19.
The realm of high energy, large wave vector spin waves in ultrathin films and at surfaces is unexplored because a suitable method was not available up to now. We present experimental data for an 8 ML thick Co film deposited on Cu(001) which show that spin-polarized electron energy loss spectroscopy can be used to measure spin-wave dispersion curves of ultrathin ferromagnetic films up to the surface Brillouin zone boundary.  相似文献   

20.
Ma LY  Tang L  Guan ZL  He K  An K  Ma XC  Jia JF  Xue QK  Han Y  Huang S  Liu F 《Physical review letters》2006,97(26):266102
Using scanning tunneling microscopy, we demonstrate that the nucleation density of Fe islands on the surface of nanoscale Pb films oscillates with the film thickness, providing a direct manifestation of the quantum size effect on surface diffusion. The Fe adatom diffusion barriers were derived to be 204+/-5 and 187+/-5 meV on a 21 and 26 monolayer (ML) Pb film, respectively, by matching the kinetic Monte Carlo simulations to the experimental island densities. The effect is further illustrated by the growth of Fe islands on wedged Pb films, where the Fe island density is consistently higher on the odd-layer films than on the even-layer films in the thickness range of 11 to 15 ML.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号