首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present here a novel camptothecin (CPT) prodrug based on polyethylene glycol monomethyl ether‐block‐poly(2‐methacryl ester hydroxyethyl disulfide‐graft‐CPT) (MPEG‐SS‐PCPT). It formed biocompatible nanoparticles (NPs) with diameters of approximately 122 nm with a CPT loading content as high as approximately 25 wt % in aqueous solution. In in vitro release studies, these MPEG‐SS‐PCPT NPs could undergo triggered disassembly and much faster release of CPT under glutathione (GSH) stimulus than in the absence of GSH. The CPT prodrug had high antitumor activity, and another anticancer drug, doxorubicin hydrochloride (DOX ? HCl), could also be introduced into the prodrug with a high loading amount. The DOX ? HCl‐loaded CPT prodrug could deliver two anticancer drugs at the same time to produce a collaborative cytotoxicity toward cancer cells, which suggested that this GSH‐responsive NP system might become a promising carrier to improve drug‐delivery efficacy.  相似文献   

2.
This research is aimed to develop a nanomicelle delivery system in order to enhance the solubility and stability of camptothecin (CPT) in aqueous media. In this case, α,β-poly[(N-carboxybutyl)-l-aspartamide] (PBAsp)–CPT was conjugated by the esterification between PBAsp and 20-OH of CPT, and hence used to fabricate nanomicelles with a particle size between the pore size of blood capillary in normal tissue and that in tumor tissue. It was worthy of note that the drug-loaded system of PBAsp–CPT nanomicelle improved the solubility and stability of CPT in aqueous media. However, with an increase of the CPT loading in PBAsp–CPT, the solubility sharply decreased. Meanwhile, the sizes of PBAsp–CPT nanomicelles showed a tendency of increase. Moreover, the drug release of PBAsp–CPT nanomicelles displayed a linear sustaining profile, and hence resulted in the essential decrease of cytotoxicity to L929 cell line. The assembled nanomicelles based on the PBAsp–CPT conjugates showed a great potential as polymer prodrug of tumor therapy, and the controlled nano-scale might achieve the passive tumor targeting.  相似文献   

3.
The coupling of nystatin (Nys), a water-insoluble antifungal agent, to dextran via an imine or amine bond was systematically investigated. Dextran was first oxidized to dialdehyde dextran using potassium periodate, purified from the oxidizing agent, and reacted with Nys to form the Schiff base. The Schiff base was reduced to the amine using borohydride. All reactions took place in water. The purification of the oxidized dextran from the oxidizing agent was essential to prevent oxidative degradation of Nys at the coupling step. The effects on the coupling yield of the following factors: dextran molecular weight, degree of oxidation (aldehyde content), Nys to dextran ratio, temperature, and reaction pH were studied. A 95% coupling yield was obtained at the optimized coupling conditions: pH 8.9 ± 0.1, 50% degree of oxidation, and initial ratio of Nys to dialdehyde dextran 1:2.5. In all experiments, dextran was decreased in molecular weight during the oxidation step. Both imine and amine forms of Nys-dextran conjugates were soluble in water and exhibited improved stability in aqueous solutions as compared to the unbound drug. The conjugates showed comparable minimum inhibitory concentration (MIC) values against Candida albicans and Cryptococcus neoformans. The conjugates were about 25 times less toxic than free Nys after a single injection in mice. © 1996 John Wiley & Sons, Inc.  相似文献   

4.
The design and construction of nanoreactors are important for biomedical applications of enzymes, but lipid‐ and polymeric‐vesicle‐based nanoreactors have some practical limitations. We have succeeded in preparing enzyme‐loaded polyion complex vesicles (PICsomes) through a facile protein‐loading method. The preservation of enzyme activity was confirmed even after cross‐linking of the PICsomes. The cross‐linked β‐galactosidase‐loaded PICsomes (β‐gal@PICsomes) selectively accumulated in the tumor tissue of mice. Moreover, a model prodrug, HMDER‐βGal, was successfully converted into a highly fluorescent product, HMDER, at the tumor site, even 4 days after administration of the β‐gal@PICsomes. Intravital confocal microscopy showed continuous production of HMDER and its distribution throughout the tumor tissues. Thus, enzyme‐loaded PICsomes are useful for prodrug activation at the tumor site and could be a versatile platform for enzyme delivery in enzyme prodrug therapy.  相似文献   

5.
Presented here is a multicomponent synthetic strategy that allows for the direct, fluorescence-based monitoring of the targeted cellular uptake and release of a conjugated therapeutic agent. Specifically, we report here the design, synthesis, spectroscopic characterization, and preliminary in vitro biological evaluation of a RGD peptide-appended naphthalimide pro-CPT (compound 1). Compound 1 is a multifunctional molecule composed of a disulfide bond as a cleavable linker, a naphthalimide moiety as a fluorescent reporter, an RGD cyclic peptide as a cancer-targeting unit, and camptothecin (CPT) as a model active agent. Upon reaction with free thiols in aqueous media at pH 7.4, disulfide cleavage occurs. This leads to release of the free CPT active agent, as well as the production of a red-shifted fluorescence emission (λ(max) = 535 nm). Confocal microscopic experiments reveal that 1 is preferentially taken up by U87 cells over C6 cells. On the basis of competition experiments involving okadaic acid, an inhibitor of endocytosis, it is concluded that uptake takes place via RGD-dependent endocytosis mechanisms. In U87 cells, the active CPT payload is released within the endoplasmic reticulum, as inferred from fluorescence-based colocalization studies using a known endoplasmic reticulum-selective dye. The present drug delivery system (DDS) could represent a new approach to so-called theragnostic agent development, wherein both a therapeutic effect and drug uptake-related imaging information are produced and can be readily monitored at the subcellular level. In due course, the strategy embodied in conjugate 1 could allow for more precise monitoring of dosage levels, as well as an improved understanding of cellular uptake and release mechanisms.  相似文献   

6.
pH- and reductive-responsive prodrug nanoparticles are constructed via a highly efficient strategy, polymerization-induced selfassembly (PISA). First, reversible addition-fragmentation chain transfer (RAFT) polymerization of 2-(diisopropylamino) ethyl methacrylate (DIPEMA) and camptothecin prodrug monomer (CPTM) using biocompatible poly(N-(2-hydroxypropyl) methacrylamide) (PHPMA-CPDB) as the macro RAFT agent is carried out, forming prodrug diblock copolymer PHPMA-P (DIPEMA-co-CPTM). Then, simultaneous fulfillment of polymerization, self-assembly, and drug encapsulation are achieved via RAFT dispersion polymerization of benzyl methacrylate (BzMA) using the PHPMA-P(DIPEMA-co-CPTM) as the macro RAFT agent. The prodrug nanoparticles have three layers, the biocompatible shell (PHPMA), the drug-conjugated middle layer (P(DIPEMA-co-CPTM)) and the PBzMA core, and relatively high concentration (250 mg/g). The prodrug nanoparticles can respond to two stimuli (reductive and acidic conditions). Due to reductive microenvironment of cytosol, the cleavage of the conjugated camptothecin (CPT) within the prodrug nanoparticles could be effectively triggered. pH-Induced hydrophobic/ hydrophilic transition of the PDIPEMA chains results in faster diffusion of GSH into the CPTM units, thus accelerated release of CPT is observed in mild acidic and reductive conditions. Cell viability assays show that the prodrug nanoparticles exhibit well performance of intracellular drug delivery and good anticancer activity.  相似文献   

7.
We have investigated a rapidly reversible hydrophobization of therapeutic agents for improving first-pass uptake in locoregional drug therapy. This approach involves the attachment of a hydrophobic moiety to the drug by highly labile chemical linkages that rapidly hydrolyze upon injection. Hydrophobization drastically enhances cell-membrane association of the prodrug and, consequently, drug uptake, while the rapid lability protects nontargeted tissues from exposure to the highly active agent. Using the membrane-impermeable DNA intercalator propidium iodide, and melphalan, we report results from in vitro cellular internalization and toxicity studies. Additionally, we report in vivo results after a single liver arterial bolus injection, demonstrating both tumor targeting and increased survival in a mouse tumor model.  相似文献   

8.
A water-insoluble anticancer agent, camptothecin (CPT) was incorporated to a polymeric micelle carrier system preparing from cholic acid chitosan-grafted poly (ethylene glycol) methyl ether (CS-mPEG-CA). CS-mPEG-CA formed a core–shell micellar structure with a critical micelle concentration (CMC) of 7.08 μg/ml. Incorporation efficiency was investigated by varying physical incorporation method and initial drug loading. Among three incorporation methods (dialysis, emulsion and evaporation methods), an emulsion method showed the highest CPT incorporation efficiency. Increasing the initial CPT loading from 5 to 40%, the incorporation efficiency decreased. In all examined CPT-loaded CS-mPEG-CA micelles, 5% initial drug loading showed the highest drug incorporation efficiency. Release of CPT from the micelles was sustained when increasing the initial CPT loading. This indicates the importance of incorporation method and the initial drug loading to obtain the optimum particle size with high drug loading and sustained drug release. When compared to the unprotected CPT, CPT-loaded CS-mPEG-CA micelles were able to prevent the hydrolysis of the lactone group of the drug. This novel CS-mPEG-CA polymer presents considerable potential interest in the further development of CPT carrier.  相似文献   

9.
This paper describes an investigation of the uptake of Cu(II) by poly(amidoamine) (PAMAM) dendrimers with an ethylenediamine (EDA) core in aqueous solutions. We use bench scale measurements of proton and metal ion binding to assess the effects of (i) metal ion-dendrimer loading, (ii) dendrimer generation/terminal group chemistry, and (iii) solution pH on the extent of binding of Cu(II) in aqueous solutions of EDA core PAMAM dendrimers with primary amine, succinamic acid, glycidol, and acetamide terminal groups. We employ extended X-ray absorption fine structure (EXAFS) spectroscopy to probe the structures of Cu(II) complexes with Gx-NH2 EDA core PAMAM dendrimers in aqueous solutions at pH 7.0. The overall results of the proton and metal ion binding measurements suggest that the uptake of Cu(II) by EDA core PAMAM dendrimers involves both the dendrimer tertiary amine and terminal groups. However, the extents of protonation of these groups control the ability of the dendrimers to bind Cu(II). Analysis of the EXAFS spectra suggests that Cu(II) forms octahedral complexes involving the tertiary amine groups of Gx-NH2 EDA core PAMAM dendrimers at pH 7.0. The central Cu(II) metal ion of each of these complexes appears to be coordinated to 2-4 dendrimer tertiary amine groups located in the equatorial plane and 2 axial water molecules. Finally, we combine the results of our experiments with literature data to formulate and evaluate a phenomenological model of Cu(II) uptake by Gx-NH2 PAMAM dendrimers in aqueous solutions. At low metal ion-dendrimer loadings, the model provides a good fit of the measured extent of binding of Cu(II) in aqueous solutions of G4-NH2 and G5-NH2 PAMAM dendrimers at pH 7.0.  相似文献   

10.
An acid-stable hydride complex [Cp*IrIII(bpy)H]+ {1, Cp* = eta5-C5Me5, bpy = 2,2'-bipyridine} serves as the active catalyst for the highly chemoselective synthesis of alpha-amino acids by reductive amination of alpha-keto acids with aqueous NH3 and HCOO- in water at pH 5-8. pH-dependent catalytic 15N- and 2H-double-labeling has also been accomplished by using 15NH3 and DCOONa, which are ideal amine and hydride ion sources, respectively.  相似文献   

11.
聚乙烯醇与对苯二甲醛,以乙二醇,多缩乙二醇作致孔剂,以油包水型悬浮体系制备了球状大孔水不溶性聚乙烯醇。它可以进一步利用缩醛化反应,酯化反应得到含有叔胺基,羧基的功能性载体,后者还可以制成N-羟基丁二酰亚胺的活性酯,在温和条件下与蛋白质或酶偶联。  相似文献   

12.
分别利用化学法和酶促法合成了酮洛芬乙烯酯和葡萄糖丁二酸乙烯酯(6-O-乙烯丁二酰-D-葡萄糖)2种聚合单体,通过2种单体的自由基聚合反应制备了具有较高分子量的酮洛芬葡萄糖共聚物前药,通过IR、NMR对聚合物的结构进行了表征,用GPC方法测定共聚物分子量。 研究了聚合单体投料比例对共聚物分子量和载药量的影响。 结果表明,随着药物乙烯酯在投料中比例的增加,聚合物前药的分子量逐渐下降,聚合物中酮洛芬的载药量逐渐增加。 酮洛芬含糖聚合物前药的体外释放研究表明,酮洛芬的释放时间大大延长,达到了缓释的目的,释药速率随着聚合物前药中葡萄糖含量增加而加快。 聚合物前药的释放动力学模拟结果显示,共聚物释药更符合一级动力学释放模型。  相似文献   

13.
《合成通讯》2013,43(23):4285-4291
Abstract

An efficient hydroxylation at the 5‐position of the C ring of camptothecins was accomplished with the complex of CuI and organic amines as catalyst in the presence of oxygen at room temperature in dimethyl formate (DMF). To be successfully hydroxylated, the insoluble camptothecin analogue was transformed to the corresponding 20 carbonates.  相似文献   

14.
We discuss here the effect of water-insoluble pharmaceutical aids on the nature of drug release from composite polymeric prodrugs synthesized by mechanochemical solid-state polymerization. Magnesium stearate (Mgst) and hydrogen castor oil (HCO) were used as water-insoluble pharmaceutical aids. Composite polymeric prodrugs were synthesized by the mechanochemical solid-state polymerization of a vinyl monomer of 5-fluorouracil (I) in the presence of Mgst or HCO. The molecular weight of the resulting polymeric prodrugs increased with increasing the content of Mgst or HCO. Prodrug hydrolysis was carried out in a heterogeneous system in phosphate buffer at pH 6.8 and 37 degrees C. The rate of drug release from the composite polymeric prodrug containing Mgst (Poly-Mgst) was faster than that from polymeric prodrug containing no pharmaceutical aids (Poly-Non), while hydrolysis of the composite polymeric prodrug containing HCO (Poly-HCO) was slower than Poly-Non. Scanning electron microscope (SEM) photos showed the surface of Poly-HCO was smoother than that of Poly-Non and Poly-Mgst. It was suggested that the slower drug release from Poly-HCO may be responsible for the smaller specific surface area than that of Poly-Non. It was also shown that the rate of drug release from the composite polymeric prodrugs decreases with increasing the content of Mgst or HCO. Hence, novel composite polymeric prodrugs with a variety of drug release rates can be prepared by mechanochemical solid-state polymerization in a totally dry process.  相似文献   

15.
A new dinudeating ligand consisting of a tetraphanylporphyrin derivative covalently linked with tris(2-benzimidazylmethyl)-amine and its homodinudear Co-Co and heterodinnelear Co-Cu complexes were synthesized and spectroscopically character-ized. The heterobimetallie cobalt-copper complex bearing three benzimidazole ligands for copper, as cytochrome c oxidase ac-tive site model, was applied to the surface of glassy carbon elec-trode to show electrocatalytie activity for O2 reduction in aque-ous solution at an addity level dose to physiological pH value.The kinetic parameters of this electrocatalytic process were ob-tained.  相似文献   

16.
Novel aminated polyacrylonitrile fibers (APANFs) were prepared through the reaction of polyacrylonitrile fibers (PANFs) with four multinitrogen-containing aminating reagents, and the best adsorbent was obtained after the optimization of preparation experiments. The APANFs were effective for arsenate removal from aqueous solution, and the sorption behaviors including kinetics, isotherms, effect of pH, and competitive anions were investigated. Experimental results show that the equilibrium of arsenate sorption on the fibers was achieved within 1 h, and Langmuir equation described the sorption isotherms well with a high sorption capacity of 256.1 mg/g obtained. The thermodynamic parameters calculated show that the sorption was spontaneous and exothermic under the condition applied. The zero point of zeta potential of the APANFs was at about pH = 8.2, in contrast with that of the PANFs at pH = 3.6. Fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS) for the APANFs before and after arsenate adsorption revealed that the amine groups on the fiber surface played an important role in the removal of arsenate from water, attributed to the electrostatic interaction between the positive protonated amine groups and negative arsenate ions.  相似文献   

17.
Photothermal therapy (PTT) has been extensively developed as an effective approach against cancer. However, PTT can trigger inflammatory responses, in turn simulating tumor regeneration and hindering subsequent therapy. A therapeutic strategy was developed to deliver enhanced PTT and simultaneously inhibit PTT‐induced inflammatory response. 1‐Pyrene methanol was utilize to synthesize the anti‐inflammatory prodrug pyrene–aspirin (P‐aspirin) with a cleavable ester bond and also facilitate loading the prodrug on gold nanorod (AuNR)‐encapsulated graphitic nanocapsule (AuNR@G), a photothermal agent, through π–π interactions. Such AuNR@G‐P‐aspirin complexes were used for near‐infrared laser‐triggered photothermal ablation of solid tumor and simultaneous inhibition of PTT‐induced inflammation through the release of aspirin in tumor milieu. This strategy showed excellent effects in vitro and in vivo.  相似文献   

18.
Several water-soluble derivatives (CPT3, CPT3a-d) of camptothecin (CPT) were synthesized, among which CPT3 bearing an N,N'-dimethyl-1-aminoethylcarbamate side-chain was further conjugated with reductively eliminating structural units of indolequinone, 4-nitrobenzyl alcohol and 4-nitrofuryl alcohol to produce novel prodrugs of camptothecin (CPT4-6). All CPT derivatives were of lower cytotoxicity than their parent compound of CPT. In contrast, CPT4 and CPT6 showed higher hypoxia selectivity of cytotoxicity towards tumor cells than CPT. A mechanism by which a representative prodrug CPT4 is activated in the presence of DT-diaphorase to release CPT was also discussed. The bioreduction activated CPT prodrugs including CPT4 and CPT6 are identified to be promising for application to the hypoxia targeting tumor chemotherapy.  相似文献   

19.
Enzyme-prodrug therapies have shown unique advantages in efficiency, selectivity, and specificity of in vivo prodrug activation. However, precise spatiotemporal control of both the enzyme and its substrate at the target site, preservation of enzyme activity, and in situ substrate depletion due to low prodrug delivery efficiency continue to be great challenges. Here, we propose a novel core–shell reactor partitioning enzyme and prodrug by ZIF-8, which integrates an enzyme with its substrate and increases the drug loading capacity (DLC) using a prodrug as the building ligand to form a Zn-prodrug shell. Cytochrome P450 (CYP450) is immobilized in ZIF-8, and the antitumor drug dacarbazine (DTIC) is coordinated and deposited in its outer layer with a high DLC of 43.6±0.8 %. With this configuration, a much higher prodrug conversion efficiency of CYP450 (36.5±1.5 %) and lower IC50 value (26.3±2.6 μg/mL) are measured for B16-F10 cells with a higher NADPH concentration than those of L02 cells and HUVECs. With the tumor targeting ability of hyaluronic acid, this core–shell enzyme reactor shows a high tumor suppression rate of 96.6±1.9 % and provides a simple and versatile strategy for enabling in vivo biocatalysis to be more efficient, selective, and safer.  相似文献   

20.
Self-immolative spacers have gained significant interest in recent years due to their utility in numerous prodrug, sensor and drug delivery systems. However, there are a very limited number of spacers that are capable of undergoing spontaneous and rapid reactions under mild conditions. To address this need, 4-aminobutyric acid derivatives were explored as a potential class of self-immolative spacers. Using a modular approach, eleven N- and α-substituted derivatives of 4-aminobutyric acid were synthesized, and their intramolecular cyclizations to γ-lactams were studied. Kinetics experiments were carried out at physiological pH and temperature, and the observed half-lives for the spacers ranged from 2 to 39 s, depending on the molecular structure. In addition, the pH dependence of the cyclization rate was also explored and it was found that cyclization still occurred rapidly at mildly acidic pH. Therefore, this class of compounds exhibits promise for incorporation into a variety of self-immolative systems where rapid cyclization reactions are desired.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号