共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The wetting of polydimethylsiloxane oil drops on the surfaces of anionic surfactant sodium dodecylsulfate solutions is studied systematically by changing the bulk surfactant concentration. The wetting state changes from complete wetting to pseudopartial wetting at 0.3 cmc (critical micelle concentration) surfactant concentration and there is a reentrant transition back to complete wetting at 1.4 cmc. The measured free energy is consistent with the prediction of the wetting theory. The interaction potential minimum of the two surfaces of the oil film disappears at the reentrant point, which is speculated to be an effect of micelle formation in the solution. 相似文献
3.
Griffiths PC Cheung AY Farley C Fallis IA Howe AM Pitt AR Heenan RK King SM Grillo I 《Langmuir : the ACS journal of surfaces and colloids》2004,20(17):7313-7322
Electron paramagnetic resonance, viscosity, and small-angle neutron scattering (SANS) measurements have been used to study the interaction of mixed anionic/nonionic surfactant micelles with the polyampholytic protein gelatin. Sodium dodecyl sulfate (SDS) and the nonionic surfactant dodecylmalono-bis-N-methylglucamide (C12BNMG) were chosen as "interacting" and "noninteracting" surfactants, respectively; SDS micelles bind strongly to gelatin but C12BNMG micelles do not. Further, the two surfactants interact synergistically in the absence of the gelatin. The effects of total surfactant concentration and surfactant mole fraction have been investigated. Previous work (Griffiths et al. Langmuir 2000, 16 (26), 9983-9990) has shown that above a critical solution mole fraction, mixed micelles bind to gelatin. This critical mole fraction corresponds to a micelle surface that has no displaceable water (Griffiths et al. J. Phys. Chem. B 2001, 105 (31), 7465). On binding of the mixed micelle, the bulk solution viscosity increases, with the viscosity-surfactant concentration behavior being strongly dependent on the solution surfactant mole fraction. The viscosity at a stoichiometry of approximately one micelle per gelatin molecule observed in SDS-rich mixtures scales with the surface area of the micelle occupied by the interacting surfactant, SDS. Below the critical solution mole fraction, there is no significant increase in viscosity with increasing surfactant concentration. Further, the SANS behavior of the gelatin/mixed surfactant systems below the critical micelle mole fraction can be described as a simple summation of those arising from the separate gelatin and binary mixed surfactant micelles. By contrast, for systems above the critical micelle mole fraction, the SANS data cannot be described by such a simple approach. No signature from any unperturbed gelatin could be detected in the gelatin/mixed surfactant system. The gelatin scattering is very similar in form to the surfactant scattering, confirming the widely accepted picture that the polymer "wraps" around the micelle surface. The gelatin scattering in the presence of deuterated surfactants is insensitive to the micelle composition provided the composition is above the critical value, suggesting that the viscosity enhancement observed arises from the number and strength of the micelle-polymer contact points rather than the gelatin conformation per se. 相似文献
4.
Asencio RÁ Cranston ED Atkin R Rutland MW 《Langmuir : the ACS journal of surfaces and colloids》2012,28(26):9967-9976
The friction and adhesion between pairs of materials (silica, alumina, and polytetrafluoroethylene) have been studied and interpreted in terms of the long-ranged interactions present. In ambient laboratory air, the interactions are dominated by van der Waals attraction and strong adhesion leading to significant frictional forces. In the presence of the ionic liquid (IL) ethylammonium nitrate (EAN) the van der Waals interaction is suppressed and the attractive/adhesive interactions which lead to "stiction" are removed, resulting in an at least a 10-fold reduction in the friction force at large applied loads. The friction coefficient for each system was determined; coefficients obtained in air were significantly larger than those obtained in the presence of EAN (which ranged between 0.1 and 0.25), and variation in the friction coefficients between systems was correlated with changes in surface roughness. As the viscosity of ILs can be relatively high, which has implications for the lubricating properties, the hydrodynamic forces between the surfaces have therefore also been studied. The linear increase in repulsive force with speed, expected from hydrodynamic interactions, is clearly observed, and these forces further inhibit the potential for stiction. Remarkably, the viscosity extracted from the data is dramatically reduced compared to the bulk value, indicative of a surface ordering effect which significantly reduces viscous losses. 相似文献
5.
Concentrated (typically 6%) solutions of a polystyrene-polyisoprene diblock copolymer in low viscosity paraffinic solvents form a micelle system by precipitating the polystyrene blocks, whereas the polyisoprene blocks are in solution. Besides viscoplastic behavior without thixotropy, this system exhibits a pronounced shear thickening in steady-state shear flow. The micelles are stable up to shear rates of more than 105 s–1. The properties of the solutions, especially the shear-thickening behavior, depend on the thermal history of the samples as well as on the solvent properties and are sensitive to flow field disturbances occurring in rotational viscometer devices with a profiled surface structure as commonly used to avoid wall slip in dispersed materials. The shear thickening is found to be related to the formation of a long-range ordered structure which also gives rise to the yield point. This long-range order enables aggregate flow with less energy dissipation at low shear rates. Shear-induced break-up of the aggregates appears as a shear-thickening transition which is observed in different types of flow fields. 相似文献
6.
《Current Opinion in Colloid & Interface Science》2001,6(5-6):446-450
We review recent developments concerning flow properties and shear induced structures in surfactant solutions. Different lyotropic phases, i.e. isotropic solutions of wormlike micelles, as well as nematic and lamellar liquid crystalline phases are discussed. Special attention is given to studies involving a combination of rheological experiments with structure sensitive techniques as, e.g. rheo-optical or rheo-NMR measurements. Recent investigations exploring time-resolved experiments to follow the processes of shear induced structural changes are included. 相似文献
7.
Zhang X Chen B Dong W Wang W 《Langmuir : the ACS journal of surfaces and colloids》2007,23(14):7433-7435
We study the possibility of the recognition of surface heterogeneities with surfactant adsorption by performing Monte Carlo simulations. It is found that when each patch size of a heterogeneous surface is capable of being commensurate with the size of aggregates adsorbed on the constituent homogeneous surfaces, the adsorption isotherm of the system will display both adsorption characteristics for each homogeneous surface. Otherwise, one or more adsorption characteristics will be spoiled or destroyed. Therefore, the adsorption isotherm of surfactants on a heterogeneous surface provides a signal of recognition. 相似文献
8.
K. Tanaka T. Takeda M. Nakamura S. Yamamura K. Miyajima 《Colloid and polymer science》1989,267(6):520-524
Interactions of the mixed surfactant solution of dodecylamido propyl dimethyl aminoacetate and sodium dodecyl sulfate with the liposomal membrane were studied. Lytic activities of the surfactants were measured as a function of the concentrations of surfactant and phospholipid and the composition of mixed surfactants. The solubilization limits of phospholipid by surfactants were determined from the change of their aggregation behavior in suspensions at equilibrium by means of quasi-elastic light scattering. The mixed surfactant solutions showed lower lytic activity than single component surfactant solution in spite of the strong adsorption onto the liposome surface. This was attributed to low solubilization power of binary mixture for phospholipid. 相似文献
9.
Dynamic particle adhesion from flow over collecting surfaces with nanoscale heterogeneity occurs in important natural systems and current technologies. Accurate modeling and prediction of the dynamics of particles interacting with such surfaces will facilitate their use in applications for sensing, separating, and sorting colloidal-scale objects. In this paper, the interaction of micrometer-scale particles with electrostatically heterogeneous surfaces is analyzed. The deposited polymeric patches that provide the charge heterogeneity in experiments are modeled as 11-nm disks randomly distributed on a planar surface. A novel technique based on surface discretization is introduced to facilitate computation of the colloidal interactions between a particle and the heterogeneous surface based on expressions for parallel plates. Combining these interactions with hydrodynamic forces and torques on a particle in a low Reynolds number shear flow allows particle dynamics to be computed for varying net surface coverage. Spatial fluctuations in the local surface density of the deposited patches are shown responsible for the dynamic adhesion phenomena observed experimentally, including particle capture on a net-repulsive surface. 相似文献
10.
Single-phase shear thickening fluids (STFs) have been extensively investigated in body protective applications. However, researchers do not have long-standing past experience of multi-phase STFs in protection. In the present work, multi-phase STFs were fabricated adding different amount of silicon carbide (SiC) additives into silica and polyethylene glycol (PEG) based suspensions. The thickening rheology of multi-phase STFs was investigated through rheological measurements. Ballistic impacts on multi-phase STF treated fabrics were carried out using lead core bullets with the impact speed of ∼330 m/s. Based on the results, multi-phase STFs improve the ballistic performance of high performance fabrics in comparison to single-phase STFs however, the mass efficiency of fabrics has a loss of performance for high velocity impact conditions. 相似文献
11.
Fan Y Cao M Yuan G Wang Y Yan H Han CC 《Journal of colloid and interface science》2006,299(2):928-937
The aggregation behavior of mixed systems of sodium bis(2-ethylhexyl) sulfosuccinate (AOT) or sodium bis(4-phenylbutyl) sulfosuccinate (SBPBS) with nonionic surfactant pentaethylene glycol mono-n-dodecyl ether (C12E5) have been studied by means of steady-state fluorescence, electrical conductivity, dynamic light scattering, transmission electron microscopy, electrophoretic light scattering and pyrene solubilization measurements. The critical concentrations for aggregation, micropolarity, mobility, solubilization capacity and morphology of aggregates are characterized. Two critical concentrations for aggregation are observed in the mixed surfactants, which may correspond to the formation of different kinds of aggregates. Moreover, it is more favorable for AOT-C12E5 to form mixed vesicles compared to SBPBS-C12E5 at higher mole fraction of C12E5. In addition, it is revealed that SBPBS-C12E5 mixture has larger solubilization capacity for pyrene than AOT-C12E5 system. 相似文献
12.
Interactions between DNA and the cationic gemini surfactant trimethylene-1,3-bis(dodecyldimethylammonium bromide) (12-3-12) in aqueous solution have been investigated by UV-vis transmittance, zeta potential, and fluorescence emission spectrum. Complexes of DNA and gemini surfactant are observed in which the negative charges of DNA are neutralized by cationic surfactants effectively. The DNA-induced micelle-like structure of the surfactant due to the electrostatic and hydrophobic interactions is determined by the fluorescence spectrum of pyrene. It is found that the critical aggregation concentration (CAC) for DNA/12-3-12 complexes depends little on the addition of sodium bromide (NaBr) because of the counterbalance salt effect. However, at high surfactant concentration, NaBr facilitates the formation of larger DNA/surfactant aggregates. Displacement of ethidium bromide (EB) by surfactant evidently illustrates the strong cooperative binding between surfactant and DNA. In contrast to that in the absence of surfactant, the added NaBr at high surfactant concentration influences not only the binding of surfactant with DNA, but also the stability of DNA/EB complex. 相似文献
13.
Rojas OJ Stubenrauch C Schulze-Schlarmann J Claesson PM 《Langmuir : the ACS journal of surfaces and colloids》2005,21(25):11836-11843
The forces acting between nonpolar surfaces coated with the nonionic surfactant n-dodecyl-beta-D-maltoside (beta-C(12)G(2)) were investigated at concentrations below and above the critical micelle concentration. The long-range and adhesive forces were measured with a bimorph surface force apparatus (MASIF). It was found that the effect of hydrodynamic interactions had to be taken into account for an accurate determination of the short-range static interactions. The results were compared with disjoining pressure versus thickness curves that were obtained earlier with a thin film pressure balance (TFPB). This comparison led to the conclusion that the charges observed at the air-water interface are not due to charged species present in the surfactant sample. In addition, it was observed that the stability of thin liquid films crucially depends on the surfactant's bulk concentration (c) and thus on the packing density in the adsorbed layer. The force barrier preventing removal of the surfactant layer from between two solid-liquid interfaces increases with increasing c, while for foam films it is the stability of the Newton black film that increases with c. Finally, the results obtained for beta-C(12)G(2) were compared with those obtained for the homologue n-decyl-beta-d-maltoside (beta-C(10)G(2)) as well as with those obtained for nonionic surfactants with polyoxyethylene moieties as polar groups. 相似文献
14.
In this experimental work we carefully investigate the influence of some organic counterions (having similarities): sodium
salicylate (NaSal), sodium tosylate (NaTos) and sodium benzoate (NaBz) on the rheological properties of two aqueous solutions
(0.1 and 0.05 M) of cetyltrimethylammonium bromide (CTAB). Here we are particularly interested in the occurrence of the shear
thickening effect corresponding to shear induced structures (SIS). All the rheological measurements presented in this work
are realized with the same geometrical device (plan-cone) with controlled imposed shear stress. Conditions of occurrence and
evolutions of the characteristics of the obtained shear thickening are given.
Received: 30 June 1997 Accepted: 20 October 1997 相似文献
15.
Photophysics of xanthene dyes in surfactant solution 总被引:1,自引:0,他引:1
Bhowmik BB Ganguly P 《Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy》2005,61(9):1997-2003
The spectral (both absorption and fluorescence) and photoelectrochemical studies of some anionic xanthene dyes namely erythrosine B, rose bengal and eosin have been carried out in micellar solution of cationic cetyl trimethyl ammonium bromide (CTAB), anionic sodium dodecyl sulphate (SDS) and neutral triton X-100 (TX-100). The results show that all these dyes form 1:1 electron-donor-acceptor (EDA) or charge-transfer (CT) complexes with TX-100, which acts as an electron donor. There is no interaction of these dyes with SDS, whereas the interaction with CTAB is mainly electrostatic in nature. In presence of TX-100, these dyes show enhancement of fluorescence intensity with a red shift and develop photovoltage in a photoelectrochemical cell. A good correlation has been found among the photovoltage generation in the systems consisting of these dyes and TX-100, spectral shift due to complex formation and thermodynamic properties of these complexes. 相似文献
16.
The fully amorphous films of highly syndiotactic poly[(R,S)‐3‐hydroxybutyrate] (s‐PHB)/atactic poly(4‐vinylphenol) (PVPh) blends show reversible thinning/thickening phenomena at 37 °C in aqueous medium. On the other hand, isotactic poly[(R)‐3‐hydroxybutyrate] (i‐PHB)/PVPh blend film, in which i‐PHB blend component was partially crystalline, did not show any thinning/thickening phenomena under the same conditions. To elucidate the factors influencing these phenomena, the structure and molecular interaction in these blends were characterized by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry, and wide‐angle X‐ray diffraction. The FTIR spectra indicated that the ester carbonyl of PHB and the phenolic hydroxyl of PVPh formed hydrogen bonds in both the thinned and thickened s‐PHB/PVPh blend films. The blend composition, intermolecular hydrogen‐bonding interaction, crystallization behavior, miscibility, and the glass‐transition temperature of the blends affected the thinning/thickening phenomena. Some other polyesters such as poly(?‐caprolactone), poly (L‐lactic acid), atactic poly(D,L‐lactic acid), and poly(ethylene terephthalate) had no ability to exhibit thinning/thickening phenomena in water at 37 °C when they were blended with PVPh. This result implies that s‐PHB/PVPh is the rare example with the ability to show reversible thinning/thickening phenomena. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2736–2743, 2002 相似文献
17.
18.
We report atomic force microscopy (AFM) measurements of the forces between borosilicate glass solids in aqueous mixtures of cationic and zwitterionic surfactants. These forces are used to determine the adsorption of the surfactant as a function of the separation between the interfaces (proximal adsorption) through the application of a Maxwell relation. In the absence of cationic surfactant, the zwitterionic surfactant N-dodecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (DDAPS) undergoes little adsorption to glass at concentrations up to about 2/3 critical micelle concentration (cmc). In addition, DDAPS does not have much effect on the forces over the same concentration range. In contrast, the cationic surfactant dodecylpyridinium chloride (DPC) does adsorb to glass and does affect the force between glass surfaces at concentrations much lower than the cmc. In the presence of a small amount of DPC (0.05 mM = cmc/300), the net force between the glass surfaces is quite sensitive to the solution concentration of DDAPS. A model-independent thermodynamic argument is used to show that the surface excess of DDAPS depends on the separation between the glass interfaces when the cationic surfactant is present and that the surface excess of the cationic surfactant is more sensitive to interfacial separation in the presence of the zwitterionic surfactant. The change in adsorption of the zwitterionic surfactant is explained in terms of an intermolecular coupling between the long-range electrostatic force acting on the cationic surfactant and the short-range hydrophobic interaction between the alkyl chains on the cationic and zwitterionic surfactants. The adsorptions of cationic and zwitterionic surfactants in mixtures were measured independently and simultaneously by attenuated total internal reflection infrared spectroscopy (ATR-IR). The adsorption of the zwitterionic surfactant is enhanced by the presence of a small amount of cationic surfactant. 相似文献
19.
The monodisperse polystyrene (PS) microspheres were prepared by dispersion polymerization. The rheological properties of shear thickening fluid (STF) based on PS microspheres dispersing in polyethylene glycol with different concentrations were studied through the steady and oscillatory shear at different temperatures, respectively. All suspensions successively present the first shear thinning, the shear thickening, and the second shear thinning. The experimental results indicate that the shear thickening behavior of STF is controlled by the concentration of PS microspheres and temperature, as changed from continuous shear thickening (CST) to discontinuous shear thickening (DST) with increasing solid content or decreasing temperature. The STF is affected by shear rate, temperature, and the viscosity of the dispersed medium, and it is reversible absolutely and presents transient response ability. Both CST and DST behave as dilatancy. The PS microsphere aggregations formed under shear stress may result in the shear thickening in STFs. 相似文献
20.
The maximum bubble pressure technique has been used to study the adsorption kinetics of binary mixtures of an anionic Gemini surfactant C9pPHCNa with a cationic conventional surfactant C10TABr in aqueous solutions. The dynamic surface tension data were analyzed using the revised Ward and Tordai equations as well as the micelle dissociation kinetic model suggested by Joos et al. The apparent diffusion coefficient Da below the cmc, the adsorption barrier epsilona and the micelle dissociation constant kmic were obtained. The Da s at short times and at long times were respectively 0.2-16 x 10(10) and 0.08-0.9 x 10(10) m2s(-1), the latter corresponded to the adsorption barrier epsilona of 10-20 kJ mol(-1). The minimum epsilona appeared at the mole fraction of C9pPHCNa (alpha1, on a surfactant-only basis) in the bulk solution being 0.33. The kmic s of the mixed micelles were about 16-2300 s(-1). The most stable mixed micelles were formed at alpha1=0.2 rather than at alpha1=0.33 owing to great discrepancy of hydrophobicity between the two components. These results indicated that the composition of mixed solution was an important factor affecting the adsorption kinetics and the micelle stability. 相似文献