首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a novel scoring function for docking of small molecules to protein binding sites. The scoring function is based on a combination of two main approaches used in the field, the empirical and knowledge-based approaches. To calibrate the scoring function we used an iterative procedure in which a ligand's position and its score were determined self-consistently at each iteration. The scoring function demonstrated superiority in prediction of ligand positions in docking tests against the commonly used Dock, FlexX and Gold docking programs. It also demonstrated good accuracy of binding affinity prediction for the docked ligands.  相似文献   

2.
We demonstrate that using an all-atom molecular mechanics force field combined with an implicit solvent model for scoring protein-ligand complexes is a promising approach for improving inhibitor enrichment in the virtual screening of large compound databases. The rescoring method is evaluated by the extent to which known binders for nine diverse, therapeutically relevant enzymes are enriched against a background of approximately 100,000 drug-like decoys. The improvement in enrichment is most robust and dramatic within the top 1% of the ranked database, that is, the first thousand compounds; below the first few percent of the ranked database, there is little overall improvement. The improved early enrichment is likely due to the more realistic treatment of ligand and receptor desolvation in the rescoring procedure. We also present anecdotal but encouraging results assessing the ability of the rescoring method to predict specificity of inhibitors for structurally related proteins.  相似文献   

3.
《Mendeleev Communications》2022,32(6):735-738
Here we propose an over-the-hood docking method that compensates for systematic errors in the docking force fields. This method explicitly estimates the interaction energy of the ligand with the protein surface and uses it as a baseline to estimate the actual binding energy in the active site. It improves the accuracy of virtual screening in the LeadFinder package by up to 48%.  相似文献   

4.
The current study investigates the combination of two recently reported techniques for the improvement of homology model-based virtual screening for G-protein coupled receptor (GPCR) ligands. First, ligand-supported homology modeling was used to generate receptor models that were in agreement with mutagenesis data and structure-activity relationship information of the ligands. Second, interaction patterns from known ligands to the receptor were applied for scoring and rank ordering compounds from a virtual library using ligand-receptor interaction fingerprint-based similarity (IFS). Our approach was evaluated in retrospective virtual screening experiments for antagonists of the metabotropic glutamate receptor (mGluR) subtype 5. The results of our approach were compared to the results obtained by conventional scoring functions (Dock-Score, PMF-Score, Gold-Score, ChemScore, and FlexX-Score). The IFS lead to significantly higher enrichment rates, relative to the competing scoring functions. Though using a target-biased scoring approach, the results were not biased toward the chemical classes of the reference structures. Our results indicate that the presented approach has the potential to serve as a general setup for successful structure-based GPCR virtual screening.  相似文献   

5.
Virtual screening is becoming an important tool for drug discovery. However, the application of virtual screening has been limited by the lack of accurate scoring functions. Here, we present a novel scoring function, MedusaScore, for evaluating protein-ligand binding. MedusaScore is based on models of physical interactions that include van der Waals, solvation, and hydrogen bonding energies. To ensure the best transferability of the scoring function, we do not use any protein-ligand experimental data for parameter training. We then test the MedusaScore for docking decoy recognition and binding affinity prediction and find superior performance compared to other widely used scoring functions. Statistical analysis indicates that one source of inaccuracy of MedusaScore may arise from the unaccounted entropic loss upon ligand binding, which suggests avenues of approach for further MedusaScore improvement.  相似文献   

6.
7.
Ebola virus (EBOV) causes zoonotic viral infection with a potential risk of global spread and a highly fatal effect on humans. Till date, no drug has gotten market approval for the treatment of Ebola virus disease (EVD), and this perhaps allows the use of both experimental and computational approaches in the antiviral drug discovery process. The main target of potential vaccines that are recently undergoing clinical trials is trimeric glycoprotein (GP) of the EBOV and its exact crystal structure was used in this structure based virtual screening study, with the aid of consensus scoring to select three possible hit compounds from about 36 million compounds in MCULE’s database. Amongst these three compounds, (5R)-5-[[5-(4-chlorophenyl)-1,2,4-oxadiazol-3-yl]methyl]-N-[(4-methoxyphenyl)methyl]-4,5-dihydroisoxazole-3-carboxamide (SC-2, C21H19ClN4O4) showed good features with respect to drug likeness, ligand efficiency metrics, solubility, absorption and distribution properties and non-carcinogenicity to emerge as the most promising compound that can be optimized to lead compound against the GP EBOV. The binding mode showed that SC-2 is well embedded within the trimeric chains of the GP EBOV with molecular interactions with some amino acids. The SC-2 hit compound, upon its optimization to lead, might be a good potential candidate with efficacy against the EBOV pathogen and subsequently receive necessary approval to be used as antiviral drug for the treatment of EVD.  相似文献   

8.
Hu A  Lo AA  Chen CT  Lin KC  Ho YP 《Electrophoresis》2007,28(9):1387-1392
CE-MS/MS analysis of proteolytic digests of bacterial cell extracts was combined with SEQUEST searching and a new scoring system to identify bacteria species in bacterial mixtures. Searches of MS/MS spectra against protein databases enabled the identification of bacterial species by the matching of the proteins associated with the corresponding species. An empirical scoring function was obtained by evaluating the SEQUEST search results of 38 samples that contained single bacterial species. The scoring by the empirical function helped move up the positive identification results from their original positions in the ranking based on Xcorr values alone. Therefore, the identification of bacteria in the samples that contained bacterial mixtures was improved. Bacterial species in 20 bacterial mixtures, including one real sample, were correctly identified by database searches and the new scoring function.  相似文献   

9.
Docking programs are widely used to discover novel ligands efficiently and can predict protein-ligand complex structures with reasonable accuracy and speed. However, there is an emerging demand for better performance from the scoring methods. Consensus scoring (CS) methods improve the performance by compensating for the deficiencies of each scoring function. However, conventional CS and existing scoring functions have the same problems, such as a lack of protein flexibility, inadequate treatment of salvation, and the simplistic nature of the energy function used. Although there are many problems in current scoring functions, we focus our attention on the incorporation of unbound ligand conformations. To address this problem, we propose supervised consensus scoring (SCS), which takes into account protein-ligand binding process using unbound ligand conformations with supervised learning. An evaluation of docking accuracy for 100 diverse protein-ligand complexes shows that SCS outperforms both CS and 11 scoring functions (PLP, F-Score, LigScore, DrugScore, LUDI, X-Score, AutoDock, PMF, G-Score, ChemScore, and D-score). The success rates of SCS range from 89% to 91% in the range of rmsd < 2 A, while those of CS range from 80% to 85%, and those of the scoring functions range from 26% to 76%. Moreover, we also introduce a method for judging whether a compound is active or inactive with the appropriate criterion for virtual screening. SCS performs quite well in docking accuracy and is presumably useful for screening large-scale compound databases before predicting binding affinity.  相似文献   

10.
Based on a statistical mechanics-based iterative method, we have extracted a set of distance-dependent, all-atom pairwise potentials for protein-ligand interactions from the crystal structures of 1300 protein-ligand complexes. The iterative method circumvents the long-standing reference state problem in knowledge-based scoring functions. The resulted scoring function, referred to as ITScore 2.0, has been tested with the CSAR (Community Structure-Activity Resource, 2009 release) benchmark of 345 diverse protein-ligand complexes. ITScore 2.0 achieved a Pearson correlation of R(2) = 0.54 in binding affinity prediction. A comparative analysis has been done on the scoring performances of ITScore 2.0, the van der Waals (VDW) scoring function, the VDW with heavy atoms only, and the force field (FF) scoring function of DOCK which consists of a VDW term and an electrostatic term. The results reveal several important factors that affect the scoring performances, which could be helpful for the improvement of scoring functions.  相似文献   

11.
We have developed an iterative knowledge-based scoring function (ITScore) to describe protein-ligand interactions. Here, we assess ITScore through extensive tests on native structure identification, binding affinity prediction, and virtual database screening. Specifically, ITScore was first applied to a test set of 100 protein-ligand complexes constructed by Wang et al. (J Med Chem 2003, 46, 2287), and compared with 14 other scoring functions. The results show that ITScore yielded a high success rate of 82% on identifying native-like binding modes under the criterion of rmsd < or = 2 A for each top-ranked ligand conformation. The success rate increased to 98% if the top five conformations were considered for each ligand. In the case of binding affinity prediction, ITScore also obtained a good correlation for this test set (R = 0.65). Next, ITScore was used to predict binding affinities of a second diverse test set of 77 protein-ligand complexes prepared by Muegge and Martin (J Med Chem 1999, 42, 791), and compared with four other widely used knowledge-based scoring functions. ITScore yielded a high correlation of R2 = 0.65 (or R = 0.81) in the affinity prediction. Finally, enrichment tests were performed with ITScore against four target proteins using the compound databases constructed by Jacobsson et al. (J Med Chem 2003, 46, 5781). The results were compared with those of eight other scoring functions. ITScore yielded high enrichments in all four database screening tests. ITScore can be easily combined with the existing docking programs for the use of structure-based drug design.  相似文献   

12.
Fragment-based drug discovery approaches allow for a greater coverage of chemical space and generally produce high efficiency ligands. As such, virtual and experimental fragment screening are increasingly being coupled in an effort to identify new leads for specific therapeutic targets. Fragment docking is employed to create target-focussed subset of compounds for testing along side generic fragment libraries. The utility of the program Glide with various scoring schemes for fragment docking is discussed. Fragment docking results for two test cases, prostaglandin D2 synthase and DNA ligase, are presented and compared to experimental screening data. Self-docking, cross-docking, and enrichment studies are performed. For the enrichment runs, experimental data exists indicating that the docking decoys in fact do not inhibit the corresponding enzyme being examined. Results indicate that even for difficult test cases fragment docking can yield enrichments significantly better than random. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
14.
MOTIVATION: Virtual screening of molecular compound libraries is a potentially powerful and inexpensive method for the discovery of novel lead compounds for drug development. The major weakness of virtual screening-the inability to consistently identify true positives (leads)-is likely due to our incomplete understanding of the chemistry involved in ligand binding and the subsequently imprecise scoring algorithms. It has been demonstrated that combining multiple scoring functions (consensus scoring) improves the enrichment of true positives. Previous efforts at consensus scoring have largely focused on empirical results, but they have yet to provide a theoretical analysis that gives insight into real features of combinations and data fusion for virtual screening. RESULTS: We demonstrate that combining multiple scoring functions improves the enrichment of true positives only if (a) each of the individual scoring functions has relatively high performance and (b) the individual scoring functions are distinctive. Notably, these two prediction variables are previously established criteria for the performance of data fusion approaches using either rank or score combinations. This work, thus, establishes a potential theoretical basis for the probable success of data fusion approaches to improve yields in in silico screening experiments. Furthermore, it is similarly established that the second criterion (b) can, in at least some cases, be functionally defined as the area between the rank versus score plots generated by the two (or more) algorithms. Because rank-score plots are independent of the performance of the individual scoring function, this establishes a second theoretically defined approach to determining the likely success of combining data from different predictive algorithms. This approach is, thus, useful in practical settings in the virtual screening process when the performance of at least two individual scoring functions (such as in criterion a) can be estimated as having a high likelihood of having high performance, even if no training sets are available. We provide initial validation of this theoretical approach using data from five scoring systems with two evolutionary docking algorithms on four targets, thymidine kinase, human dihydrofolate reductase, and estrogen receptors of antagonists and agonists. Our procedure is computationally efficient, able to adapt to different situations, and scalable to a large number of compounds as well as to a greater number of combinations. Results of the experiment show a fairly significant improvement (vs single algorithms) in several measures of scoring quality, specifically "goodness-of-hit" scores, false positive rates, and "enrichment". This approach (available online at http://gemdock.life. nctu.edu.tw/dock/download.php) has practical utility for cases where the basic tools are known or believed to be generally applicable, but where specific training sets are absent.  相似文献   

15.
16.
The efficiency of scoring functions for hit identification is usually quantified in terms of enrichment factors and enrichment curves. Close inspection of simulated and real score distributions from virtual screening, however, suggests that 'analysis of variance' (ANOVA) is a more reliable method for assessing their performance. Using ANOVA to quantify the discriminatory power of scoring functions with respect to ligands, decoys, and a reproducible reference database has the potential to facilitate the advancement of scoring functions significantly.  相似文献   

17.
It is a difficult task to recognize the trends in molecular physical properties relevant to a specific chemical class and find a way to optimize potential compounds. We present here a novel hierarchical data visualization technique, named "HeiankyoView", to visualize large-scale multidimensional chemical information. HeiankyoView represents hierarchically organized data objects by mapping leaf nodes as colored square icons and nonleaf nodes as rectangular borders. In this way, data objects can be expressed as equishaped icons without overlapping one another in the two-dimensional display space. HeiankyoView has been applied to visualize aqueous solubility data for 908 compounds collected from the published literature. When the results of a recursive partitioning analysis and hierarchical clustering analysis were visualized, the trends hidden in the solubility data could be effectively displayed as intuitively understandable visual images. Most interestingly, the data visualization technique, without any statistical computations, was able to assist us in extracting from such large-scale data meaningful information establishing that ClogP and the molecular weight are critical factors in determining aqueous solubility. Thus, HeiankyoView is a powerful tool to help us understand structure-activity relationships intuitively from a large-scale data set.  相似文献   

18.
19.
A novel cell-permeable DNA fluorescence sensor was developed based on combinatorially-created styryl dyes and cell-based localization screening.  相似文献   

20.
《Tetrahedron letters》1987,28(26):2929-2932
Photolysis of 2,n-diphenylcycloalkanones (n-membered ring, n = 10, 11, 12, 15) produces products that are significantly enriched in 13C. The enrichments are different for each product, and this allows assignment of the dynamic pathways through which each product is formed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号