首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
[structure: see text] Fluorescent small molecules are powerful tools for exploring cellular biology. As a more hydrophobic, photostable, and less pH-sensitive alternative to fluorescein, we synthesized Pennsylvania Green, a bright, monoanionic fluorophore related to Oregon Green and Tokyo Green. Comparison of membrane probes comprising N-alkyl-3beta-cholesterylamine linked to 4-carboxy-Tokyo Green (pK(a) approximately 6.2) and 4-carboxy-Pennsylvania Green (pK(a) approximately 4.8) revealed that only Pennsylvania Green was highly fluorescent in acidic early and recycling endosomes within living mammalian cells.  相似文献   

2.
Proteins represent an expanding class of therapeutics, but their actions are limited primarily to extracellular targets because most peptidic molecules fail to enter cells. Here we identified two small proteins, miniature protein 5.3 and zinc finger module ZF5.3, that enter cells to reach the cytosol through rapid internalization and escape from Rab5+ endosomes. The trafficking pathway mapped for these molecules differs from that of Tat and Arg(8), which require transport beyond Rab5+ endosomes to gain cytosolic access. Our results suggest that the ability of 5.3 and ZF5.3 to escape from early endosomes is a unique feature and imply the existence of distinct signals, encodable within short sequences, that favor early versus late endosomal release. Identifying these signals and understanding their mechanistic basis will illustrate how cells control the movement of endocytic cargo and may allow researchers to engineer molecules to follow a desired delivery pathway for rapid cytosolic access.  相似文献   

3.
Cell-penetrating peptides (CPPs), once postulated to cross cell membranes in a non-endocytic, non-energy-dependent process, have since been found to accumulate in vesicles in live mammalian cells. In this study, we show that it is possible to use laser light from a confocal microscope to cause labeled peptide-conjugated CPPs to redistribute from vesicles into the cytoplasm and nucleus of cells. Following redistribution, the cells are found to be biologically responsive, and they retain morphology for several hours. It was possible to initiate redistribution of both fluorescein- and Alexa633-labeled peptides by selective irradiation of one of the fluorophores. These peptides could potentially be used as tracers to selectively deliver cargo biomolecules into cells by laser illumination using a standard fluorescence confocal microscope.  相似文献   

4.
Specific receptors on the surface of mammalian cells actively internalize cell-impermeable ligands by receptor-mediated endocytosis. To mimic these internalizing receptors, my laboratory is studying artificial cell surface receptors that comprise N-alkyl derivatives of 3beta-cholesterylamine linked to motifs that bind cell-impermeable ligands. When added to living mammalian cells, these synthetic receptors insert into cellular plasma membranes, project ligand-binding small molecules or peptides from the cell surface, and enable living cells to internalize targeted proteins and other cell-impermeable compounds. These artificial receptors mimic their natural counterparts by rapidly cycling between plasma membranes and intracellular endosomes, associating with proposed cholesterol and sphingolipid-rich lipid raft membrane microdomains, and delivering ligands to late endosomes/lysosomes. This "synthetic receptor targeting" strategy is briefly reviewed here and contrasted with other related cellular delivery systems. Potential applications of artificial cell surface receptors as molecular probes, agents for cellular targeting, tools for drug delivery, and methods for ligand depletion are discussed. The construction of synthetic receptors as prosthetic molecules, designed to seamlessly augment the molecular machinery of living cells, represents an exciting new frontier in the fields of bioorganic chemistry and chemical biology.  相似文献   

5.
Binding of ligands to macromolecular receptors on the surface of mammalian cells often results in ligand uptake through receptor-mediated endocytosis. Certain human leukocytes and epithelial cells express Fc receptors (FcRs) that bind and internalize antibodies through this mechanism. To mimic this process, we synthesized an artificial FcR comprising the membrane anchor N-alkyl-3beta-amino-5alpha-cholestane linked to a disulfide-constrained cyclic peptide, termed FcIII, known to exhibit high affinity and specificity for the Fc region of human IgG. Treatment of human Jurkat lymphocytes that lack natural FcRs with the synthetic FcR (1 microM, 1 h) installed an average of approximately 6.2 x 10(5) synthetic receptor molecules per cell surface. These treated cells gained the capacity to internalize human IgG at levels greater than human THP-1 cells that express the natural receptors FcgammaRI and FcgammaRII. By linking binding motifs for circulating ligands to membrane anchors that cycle between the cell surface and intracellular endosomes, minimalistic cell surface receptors can be used to destroy targeted ligands by endocytosis. These small mimics of macromolecular receptors may be useful for controlling the extracellular abundance of ligands involved in disease.  相似文献   

6.
The poor uptake of fluorescent probes and therapeutics by mammalian cells is a major concern in biological applications ranging from fluorescence imaging to drug delivery in living cells. Although gaseous molecules such as oxygen and carbon dioxide, hydrophobic substances such as benzene, and small polar but uncharged molecules such as water and ethanol can cross the cell plasma membrane by simple passive diffusion, many synthetic as well as biological molecules require specific membrane transporters and channel proteins that control the traffic of these molecules into and out of the cell. This work reports that the introduction of halogen atoms into a series of fluorescent molecules remarkably enhances their cellular uptake, and that their transport can be increased to more than 95 % by introducing two iodine atoms at appropriate positions. The nature of the fluorophore does not play a major role in the cellular uptake when iodine atoms are present in the molecules, as compounds bearing naphthalimide, coumarin, BODIPY, and pyrene moieties show similar uptakes. Interestingly, the introduction of a maleimide-based fluorophore bearing two hydroxyethylthio moieties allows the molecules to cross the plasma and nuclear membranes, and the presence of iodine atoms further enhances the transport across both membranes. Overall, this study provides a general strategy for enhancing the uptake of organic molecules by mammalian cells.  相似文献   

7.
DNA short oligo, surfactant, peptides, and polymer-assisted dispersion of single-walled carbon nanotube (SWCNTs) in aqueous solution have been intensively studied. It has been suggested that van der Waals interaction, π-π stacking, and hydrophobic interaction are major factors that account for the SWCNTs dispersion. Fluorophore and dye molecules such as Rhodamine B and fluorescein have both hydrophilic and hydrophobic moieties. These molecules also contain π-conjugated systems that can potentially interact with SWCNTs to induce its dispersion. Through a systematic study, here we show that SWCNTs can be dispersed in aqueous solution in the presence of various fluorophore or dye molecules. However, the ability of a fluorophore or dye molecule to disperse SWCNTs is not correlated with the stability of the fluorophore/dye-SWCNT complex, suggesting that the on-rate of fluorophore/dye binding to SWCNTs may dominate the efficiency of this process. We also examined the uptake of fluorophore molecules by mammalian cells when these molecules formed complexes with SWCNTs. The results can have potential applications in the delivery of poor cell-penetrating fluorophore molecules.  相似文献   

8.
Receptors on the surface of mammalian cells promote the uptake of cell-impermeable ligands by receptor-mediated endocytosis. To mimic this process, we synthesized small molecules designed to project anti-dinitrophenyl antibody-binding motifs from the surface of living Jurkat lymphocytes. These synthetic receptors comprise N-alkyl derivatives of 3beta-cholesterylamine as the plasma membrane anchor linked to 2,4-dinitrophenyl (DNP) and structurally similar fluorescent 7-nitrobenz-2-oxa-1,3-diazole (NBD) headgroups. Insertion of two beta-alanine subunits between a DNP derivative and 3beta-cholesterylamine yielded a receptor that avidly associates with cell surfaces (cellular t(1/2) approximately 20 h). When added to Jurkat cells at 10 microM, this receptor enhanced uptake of an anti-DNP IgG ligand by approximately 200-fold in magnitude and approximately 400-fold in rate within 4 h (ligand internalization t(1/2) approximately 95 min at 37 degrees C). This non-natural receptor mimics many natural receptors by dynamically cycling between plasma membranes and intracellular endosomes (recycling t(1/2) approximately 3 min), targeting of protein ligands to proposed cholesterol and sphingolipid-enriched lipid raft membrane microdomains, and delivery of protein ligands to late endosomes/lysosomes. Quantitative dithionite quenching of fluorescent extracellular NBD headgroups demonstrated that other 3beta-cholesterylamine derivatives bearing fewer beta-alanines in the linker region or N-acyl derivatives of 3beta-cholesterylamine were less effective receptors due to more extensive trafficking to internal membranes. Synthetic cell surface receptors have potential applications as cellular probes, tools for drug delivery, and methods to deplete therapeutically important extracellular ligands.  相似文献   

9.
Endocytosis at reduced temperature has been used to define and characterize endosome subpopulations. Thus, the temperature sensitivity of endosome subpopulations involved in transport to lysosomes and transcytosis in rat hepatocytes was analyzed applying endosome labeling in the isolated perfused rat liver with route-specific ligands in combination with temperature shift protocols. Free-flow electrophoresis (FFE) that separates membranes and organelles based on their surface charge was then applied to isolate functional endosomes. Using asialoorosomucoid (ASOR) and polymeric immunoglobulin A (pIgA) as specific ligands of the lysosomal and transcytotic route, respectively, two distinct endosome subpopulations along either pathway were separated by FFE. Upon a short (1-3 min) internalization at 37 degrees C, 125I-ASOR and fluorescein isothiocyanate (FITC)-pIgA were colocalized in common early endosomes. Following a 5-10 min chase of the ligands at 37 degrees C endosomes labeled with 125I-ASOR were separated from endosomes labeled with FITC-pIgA, indicative of two distinct late compartments along the lysosomal and transcytotic route. Internalization at 16 degrees C resulted in accumulation of both ligands in common early endosomes and, consequently, in inhibition of transport to lysosomes and transcytosis. When 125I-ASOR or 125I-pIgA were first chased into late compartments at 37 degrees C and the temperature was subsequently lowered to 16 degrees C, biliary secretion of 125I-ASOR-derived counts was arrested, while biliary output of 125I-pIgA continued. In summary, ASOR en route to lysosomes can be blocked in early as well as in late endosomes at 16 degrees C, while biliary secretion of pIgA cannot be prevented by temperature reduction once the ligand had been transferred from early to late compartments.  相似文献   

10.
Targeting drugs selectively to cancer cells can potentially benefit cancer patients by avoiding side effects generally associated with several cancer therapies. One of the attractive approaches to direct the drug cargo to specific sites is to incorporate ligands at the surface of the delivery systems. Integrin α(5)β(1) is overexpressed in tumor vasculature and cancer cells, thus making it an attractive target for use in drug delivery. Our group has developed a fibronectin-mimetic peptide, PR_b, which has been shown to bind specifically to integrin α(5)β(1), thereby providing a tool to target α(5)β(1)-expressing cancer cells in vitro as well as in vivo. Our current work focuses on designing modified stealth liposomes (liposomes functionalized with polyethylene glycol, PEG) for combining the benefits associated with PEGylation, as well as imparting specific targeting properties to the liposomes. We have designed PEGylated liposomes that incorporate in their bilayer the fibronectin-mimetic peptide-amphiphile PR_b that can target several cancer cells that overexpress α(5)β(1), including the MDA-MB-231 breast cancer cells used in this study. We have encapsulated doxorubicin inside the liposomes to enhance its therapeutic potential via PEGylation as well as active targeting to the cancer cells. Our results show that PR_b-functionalized stealth liposomes were able to specifically bind to MDA-MB-231 cells, and the binding could be controlled by varying the peptide concentration. The intracellular trafficking of the doxorubicin liposomes was examined, and within minutes after delivery the majority of them were found to be in the early endosomes, whereas after a longer period of time they had accumulated in the late endosomes and lysosomes. The functionalized liposomes were found to be equally cytotoxic as the free doxorubicin, especially at higher doxorubicin concentrations, and provided higher cytotoxicity than the nontargeted and GRGDSP-functionalized stealth liposomes. Thus, the PR_b-functionalized PEGylated nanoparticles examined in this study offer a promising strategy to deliver their therapeutic payload directly to the breast cancer cells, in an efficient and specific manner.  相似文献   

11.
Supercharged proteins (SCPs) can deliver functional macromolecules into the cytoplasm of mammalian cells more potently than unstructured cationic peptides. Thus far, neither the structural features of SCPs that determine their delivery effectiveness nor their intracellular fate postendocytosis, has been studied. Using a large set of supercharged GFP (scGFP) variants, we found that the level of cellular uptake is sigmoidally related to net charge and that scGFPs enter cells through multiple pathways, including clathrin-dependent endocytosis and macropinocytosis. SCPs activate Rho and ERK1/2 and also alter the endocytosis of transferrin and EGF. Finally, we discovered that the intracellular trafficking of endosomes containing scGFPs is altered in a manner that correlates with protein delivery potency. Collectively, our findings establish basic structure-activity relationships of SCPs and implicate the modulation of endosomal trafficking as a determinant of macromolecule delivery efficiency.  相似文献   

12.
Extracellular DNA is engulfed by innate immune cells and digested by endosomal DNase II to generate an immune response. Quantitative information on endosomal stage‐specific cargo processing is a critical parameter to predict and model the innate immune response. Biochemical assays quantify endosomal processing but lack organelle‐specific information, while fluorescence microscopy has provided the latter without the former. Herein, we report a single molecule counting method based on fluorescence imaging that quantitatively maps endosomal processing of cargo DNA in innate immune cells with organelle‐specific resolution. Our studies reveal that endosomal DNA degradation occurs mainly in lysosomes and is negligible in late endosomes. This method can be used to study cargo processing in diverse endocytic pathways and measure stage‐specific activity of processing factors in endosomes.  相似文献   

13.
The pH low insertion peptide (pHLIP) offers the potential to deliver drugs selectively to the cytoplasm of cancer cells based on tumor acidosis. The WT pHLIP inserts into membranes with a pH50 of 6.1, while most solid tumors have extracellular pH (pHe) of 6.5–7.0. To close this gap, a SAR study was carried out to search for pHLIP variants with improved pH response. Replacing Asp25 with α‐aminoadipic acid (Aad) adjusts the pH50 to 6.74, matching average tumor acidity, and replacing Asp14 with γ‐carboxyglutamic acid (Gla) increases the sharpness of pH response (transition over 0.5 instead of 1 pH unit). These effects are additive: the Asp14Gla/Asp25Aad double variant shows a pH50 of 6.79, with sharper transition than Asp25Aad. Furthermore, the advantage of the double variant over WT pHLIP in terms of cargo delivery was demonstrated in turn‐on fluorescence assays and anti‐proliferation studies (using paclitaxel as cargo) in A549 lung cancer cells at pH 6.6.  相似文献   

14.
Bioorthogonal reactions are ideally suited to selectively modify proteins in complex environments, even in vivo. Kinetics and product stability of these reactions are crucial parameters to evaluate their usefulness for specific applications. Strain promoted inverse electron demand Diels–Alder cycloadditions (SPIEDAC) between tetrazines and strained alkenes or alkynes are particularly popular, as they allow ultrafast labeling inside cells. In combination with genetic code expansion (GCE)-a method that allows to incorporate noncanonical amino acids (ncAAs) site-specifically into proteins in vivo. These reactions enable residue-specific fluorophore attachment to proteins in living mammalian cells. Several SPIEDAC capable ncAAs have been presented and studied under diverse conditions, revealing different instabilities ranging from educt decomposition to product loss due to β-elimination. To identify which compounds yield the best labeling inside living mammalian cells has frequently been difficult. In this study we present a) the synthesis of four new SPIEDAC reactive ncAAs that cannot undergo β-elimination and b) a fluorescence flow cytometry based FRET-assay to measure reaction kinetics inside living cells. Our results, which at first sight can be seen conflicting with some other studies, capture GCE-specific experimental conditions, such as long-term exposure of the ring-strained ncAA to living cells, that are not taken into account in other assays.  相似文献   

15.
We report the synthesis and first characterisation of the novel chemical probe 3-bromotetrazine and establish its reactivity towards nucleophiles. This led to the synthesis of several novel classes of 3-monosubstituted s-tetrazines. A remarkable functional group selectivity is observed and is utilised to site-selectively functionalise different complex molecules. The stability of 3-bromotetrazine under the reaction conditions facilitated the development of a protocol for protein functionalisation, which enabled a “minimal”, bifunctional tetrazine unit as a bio-orthogonal handle for inverse electron demand Diels–Alder reactions. Additionally, a novel tetrazine-based chemical probe was developed and its application in the context of thiol-targeted natural product isolation and labelling of mammalian cells is demonstrated.

3-Bromotetrazine selectively labels small and macromolecules up to proteins and can then be used as a fluorophore or as a bio-orthogonal handle for downstream functionalisation.  相似文献   

16.
Endosomal escape in cell-penetrating peptide (CPP)-based drug/macromolecule delivery systems is frequently insufficient. The CPP-fused molecules tend to remain trapped inside endosomes and end up being degraded rather than delivered into the cytosol. One of the methods for endosomal escape of CPP-fused molecules is photochemical internalization (PCI), which is based on the use of light and a photosensitizer and relies on photoinduced endosomal membrane destabilization to release the cargo molecule. Currently, it remains unclear how this delivery strategy behaves after photostimulation. Recent findings, including our studies using CPP-cargo-photosensitizer conjugates, have shed light on the photoinduced endosomal escape mechanism. In this review, we discuss the structural design of CPP-photosensitizer and CPP-cargo-photosensitizer conjugates, and the PCI mechanism underlying their application.  相似文献   

17.
Antibody–drug conjugates (ADCs) are valuable therapeutic entities which leverage the specificity of antibodies to selectively deliver cytotoxins to antigen-expressing targets such as cancer cells. However, current methods for their construction still suffer from a number of shortcomings. For instance, using a single modification technology to modulate the drug-to-antibody ratio (DAR) in integer increments while maintaining homogeneity and stability remains exceptionally challenging. Herein, we report a novel method for the generation of antibody conjugates with modular cargo loading from native antibodies. Our approach relies on a new class of disulfide rebridging linkers, which can react with eight cysteine residues, thereby effecting all-in-one bridging of all four interchain disulfides in an IgG1 antibody with a single linker molecule. Modification of the antibody with the linker in a 1 : 1 ratio enabled the modulation of cargo loading in a quick and selective manner through derivatization of the linker with varying numbers of payload attachment handles to allow for attachment of either 1, 2, 3 or 4 payloads (fluorescent dyes or cytotoxins). Assessment of the biological activity of these conjugates demonstrated their exceptional stability in human plasma and utility for cell-selective cytotoxin delivery or imaging/diagnostic applications.

Tetra-divinylpyrimidine (TetraDVP) linkers offer a method for the generation of antibody conjugates with modular cargo loading and excellent stability via all-in-one disulfide bridging.  相似文献   

18.
Cell-penetrating peptides and proteins (CPPs) are important tools for the delivery of impermeable molecules into living mammalian cells. To enable these cells to internalize proteins fused to common oligohistidine affinity tags, we synthesized an artificial cell surface receptor comprising an N-alkyl derivative of 3beta-cholesterylamine linked to the metal chelator nitrilotriacetic acid (NTA). This synthetic receptor inserts into cellular plasma membranes, projects NTA headgroups from the cell surface, and rapidly cycles between the plasma membrane and intracellular endosomes. Jurkat lymphocytes treated with the synthetic receptor (10 microM) for 1 h displayed approximately 8,400,000 [corrected]NTA groups on the cell surface. Subsequent addition of the green fluorescent protein AcGFP fused to hexahistidine or decahistidine peptides (3 microM) and Ni(OAc)(2) (100 microM) enhanced the endocytosis of AcGFP by 150-fold (hexahistidine fusion protein) or 600-fold (decahistidine fusion protein) within 4 h at 37 degrees C. No adverse effects on cellular proliferation or morphology were observed under these conditions. By enabling common oligohistidine affinity tags to function as cell-penetrating peptides, this metal-chelating cell surface receptor provides a useful tool for studies of cellular biology [corrected]  相似文献   

19.
There is increasing interest in the usefulness of block copolymer micelles as drug delivery vehicles. However, their subcellular distribution has not been explored extensively, mostly because of the lack of adequately labeled block copolymers. In a previous study, we showed that fluorescently labeled block copolymer micelles entered living cells and co-localized with cytoplasmic organelles selectively labeled with fluorescent dyes. The details of the observed co-localizations were, however, limited by the resolution of the fluorescence approach, which is ca. 500 nm. Using transmission electron microscopy (TEM), we established time- and concentration-dependent subcellular distributions of gold-labeled micelles within human embryonic kidney (HEK 293) cells and human lung carcinoma (A549) cells. Gold particles were incorporated into poly(4-vinylpyridine)-block-poly(ethylene oxide) (P4VP21-b-PEO45) micelles. Data from dynamic light scattering (DLS) and TEM analyses revealed that the sizes of the gold particles ranged from 4 to 8 nm. The cells survived up to 24 h in the presence of low gold-labeled micelle concentrations (0.73 microg/mL), but cell death occurred at higher concentrations (i.e., kidney cells are more susceptible than lung cells). Over 24 h periods of equivalent exposure, lung cells internalized significantly more gold-incorporated micelles than kidney cells. Although micelles were added to the cell culture media as dispersed colloidal particles, the presence of serum in these media caused aggregation. These aggregates occurred mainly close to the cell plasma membrane at early times (5-10 min); however, at later times (24 h) aggregated particles were seen inside endosomes and lysozomes. Thus, gold-incorporated (labeled) micelles can serve as a valuable extension of the fluorescence approach to visualizing the localization of micelles in subcellular compartments, improving the resolution by at least 20-fold.  相似文献   

20.
Governing function, half-life and subcellular localization, the 3D structure and dynamics of proteins are in nature constantly changing in a tightly regulated manner to fulfill the physiological and adaptive requirements of the cells. To find evidence for this hypothesis, we applied in-cell NMR to three folded model proteins and propose that the splitting of cross peaks constitutes an atomic fingerprint of distinct structural states that arise from multiple target binding co-existing inside mammalian cells. These structural states change upon protein loss of function or subcellular localisation into distinct cell compartments. In addition to peak splitting, we observed NMR signal intensity attenuations indicative of transient interactions with other molecules and dynamics on the microsecond to millisecond time scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号