首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ONOONO has been proposed as an intermediate in the oxidation of nitric oxide by dioxygen to yield nitrogen dioxide. The O-O bond breaking reactions of this unusual peroxide, and subsequent rearrangements, were evaluated using CBS-QB3 and B3LYP/6-311G hybrid density functional theory. The three stable conformers (cis,cis-, cis,trans-, and trans,trans-ONOONO, based on the O-N-O-O dihedral angles of either approximately 0 degrees or approximately 180 degrees ) are predicted to have very different O-O cleavage barriers: 2.4, 13.0, and 29.8 kcal/mol, respectively. These large differences arise because bond breaking leads to correlation of the nascent NO(2) fragments with either the ground (2)A(1) state or the excited (2)B(2) state of NO(2), depending on the starting ONOONO conformation. A cis-oriented NO(2) fragment correlates with the (2)A(1) state, whereas a trans-oriented NO(2) fragment correlates with the (2)B(2) state. Each NO(2) fragment that correlates with (2)A(1) lowers the O-O homolysis energy by approximately 15 kcal/mol, similar to the approximately 17-25 kcal/mol (2)A(1) --> (2)B(2) energy difference in NO(2). Hence, this provides an unusual example of conformation-dependent electronic state selectivity. The O-O bond homolysis of cis,cis-ONOONO is particularly interesting because it has a very low barrier and arises from the most stable ONOONO conformer, and also due to obvious similarities to the well-known [3,3]-sigmatropic shift of 1,5-hexadiene, i.e., the Cope rearrangement. As an additional proof of our state selectivity postulate, a comparison is also made to breakage of the O-O bond of cis,cis-formyl peroxide, where no significant stabilization of the transition state is available because the (2)A(1) and (2)B(2) states of formyloxy radical are near-degenerate in energy. In the case of trans,trans-ONOONO, the O-O bond breaking transition state is a concerted rearrangement yielding O(2)NNO(2), whereas for cis,cis- and cis,trans-ONOONO, the initially formed NO(2) radical pairs can undergo further rearrangement to yield ONONO(2). It is proposed that previous spectroscopic observations of certain N=O stretching frequencies in argon-matrix-isolated products from the reaction of NO with O(2) (or (18)O(2)) are likely from ONONO(2), not the OONO radical as reported.  相似文献   

2.
The viability of some nitration pathways is explored for benzene (B), naphthalene (N), and in part pyrene (P). In principle, functionalization can either take place by direct nitration (NO2 or N2O5 attack) or be initiated by more reactive species, as the nitrate and hydroxyl radicals. The direct attack of the NO2 radical on B and N, followed by abstraction of the H geminal to the nitro group (most likely accomplished by 3O2) could yield the final nitro-derivatives. Nevertheless, the initial step (NO2 attack) involves significant free energy barriers. N2O5 proves to be an even worst nitrating agent. These results rule out direct nitration at room temperature. Instead, NO3 and, even more easily, HO can form pi-delocalized nitroxy- or hydroxycyclohexadienyl radicals. A subsequent NO2 attack can produce several regio- and diastereoisomers of nitroxy-nitro or hydroxy-nitro cyclohexadienes. In this respect, the competition between NO2 and O2 is considered: the rate ratios are such to indicate that the NO3 and HO initiated pathways are the major source of nitroarenes. Finally, if the two substituents are 1,2-trans, either a HNO3 or a H2O concerted elimination can give the nitro-derivatives. Whereas HNO3 elimination is feasible, H2O elimination presents, by contrast, a high barrier. Under combustion conditions the NO2 direct nitration pathway is more feasible, but remains a minor channel.  相似文献   

3.
˙NO is an arginine‐derived signal molecule which together with prostacyclin is involved in blood vessel relaxation. Superoxide (˙O2‐) being a radical like ˙NO, almost quantitatively traps ˙NO under formation of peroxynitrite, which is able to oxidatively modify biomolecules. Already submicromolar concentrations of peroxynitrite selectively cause a tyrosine nitration and inactivation of prostacyclin synthase. The mechanism of this nitration could be explained by a heme‐thiolate‐catalyzed homolytic cleavage of peroxynitrite followed by the formation of a ferryl/˙NO2 intermediate. By this nitration reaction the superoxide radical gains a new function as a signal molecule with antagonistic actions to ˙NO. Inflammatory conditions upregulate ˙NO and superoxide in many cells and by the generating higher levels of peroxynitrite cause pathophysiological effects. Such oxidative changes may be a future target for pharmacological interventions by suitable antioxidants.  相似文献   

4.
Peroxynitric acid (O2NOOH) nitrates L-tyrosine and related compounds at pH 2-5. During reaction with O2(15)NOOH in the probe of a 15N NMR spectrometer, the NMR signals of the nitration products of L-tyrosine, N-acetyl-L-tyrosine, 4-fluorophenol and 4-methoxyphenylacetic acid appear in emission indicating a nitration via free radicals. Nuclear polarizations are built up in radical pairs [15NO2* , PhO*]F or [15NO2* , ArH*+]F formed by diffusive encounters of 15NO2 with phenoxyl-type radicals PhO or with aromatic radical cations ArH*+. Quantitative 15N CIDNP investigations with N-acetyl-L-tyrosine and 4-fluorophenol show that the radical-dependent nitration is the only reaction pathway. During the nitration reaction, the 15N NMR signal of 15NO3- also appears in emission. This is explained by singlet-triplet transitions in radical pairs [15NO2* , 15NO3*]S generated by electron transfer between O2(15)NOOH and H15NO2 formed as a reaction intermediate. During reaction of peroxynitric acid with ascorbic acid, 15N CIDNP is again observed in the 15N NMR signal of 15NO3- showing that ascorbic acid is oxidized by free radicals. In contrast to this, O2(15)NOOH reacts with glutathione and cysteine without the appearance of 15N CIDNP, indicating a direct oxidation without participation of free radicals.  相似文献   

5.
The highly disparate rates of aromatic nitrosation and nitration, despite the very similar (electrophilic) properties of the active species: NO(+) and NO(2)(+) in Chart 1, are quantitatively reconciled. First, the thorough mappings of the potential-energy surfaces by high level (ab initio) molecular-orbital methodologies involving extensive coupled-cluster CCSD(T)/6-31G optimizations establish the intervention of two reactive intermediates in nitration (Figure 8) but only one in nitrosation (Figure 7). Second, the same distinctive topologies involving double and single potential-energy minima (Figures 6 and 5) also emerge from the semiquantitative application of the Marcus-Hush theory to the transient spectral data. Such a striking convergence from quite different theoretical approaches indicates that the molecular-orbital and Marcus-Hush (potential-energy) surfaces are conceptually interchangeable. In the resultant charge-transfer mechanism, the bimolecular interactions of arene donors with both NO(+) and NO(2)(+) spontaneously lead (barrierless) to pi-complexes in which electron transfer is concurrent with complexation. Such a pi-complex in nitration is rapidly converted to the sigma-complex, whereas this Wheland adduct in nitrosation merely represents a high energy (transition-state) structure. Marcus-Hush analysis thus demonstrates how the strongly differentiated (arene) reactivities toward NO(+) and NO(2)(+) can actually be exploited in the quantitative development of a single coherent (electron-transfer) mechanism for both aromatic nitrosation and nitration.  相似文献   

6.
刘永东  钟儒刚 《结构化学》2010,29(3):421-431
Reactive nitrogen oxygen species(RNOS) implicate damage in biological systems,especially leading to inflammation,neurodegenerative and cardiovascular diseases,and cancer by altering the functions of biomolecules through the N-nitrosation and N-nitration reactions.The mechanisms of N-nitrosation and N-nitration reactions of ammonia and dimethylamine by RNOS,i.e.,N2O3,N2O4,N2O5 and ONOOH,were investigated at the CBS-QB3 level of theory.The computational results indicate that the N-nitrosation reaction prefers a concerted mechanism,in which a H-abstraction and ON-addition occur simultaneously,whereas a stepwise mechanism(also called a free radical mechanism) is more favorable for most nitrating agents in the N-nitration reaction,where NO2 first abstracts a hydrogen atom from the nitrogen of amines and then the induced intermediate reacts with NO2 once more to form the nitration products.However,the concerted pathway is still a feasible process for some nitrating agents such as N2O5.In addition,the relationship between the structures of different RNOS and their nitrosating or nitrating abilities was also investigated.  相似文献   

7.
Isomerization of N(2)O(4) and dimerization of NO(2) in thin water films on surfaces are believed to be key steps in the hydrolysis of NO(2), which generates HONO, a significant precursor to the OH free radical in lower atmosphere and high-energy materials. Born-Oppenheimer molecular dynamics simulations using the density functional theory are carried out for NO(2)(H(2)O)(m), m ≤ 4, and N(2)O(4)(H(2)O)(n) clusters, n ≤ 7, used to mimic the surface reaction, to investigate the mechanism around room temperature. The results are (i) the NO(2) dimerization and N(2)O(4) isomerization reactions occur via two possible pathways, the non-water-assisted and water-assisted mechanisms; (ii) the NO(2) dimerization in the presence of water yields either ONONO(2)(H(2)O)(m) or NO(3)(-)NO(+)(H(2)O)(m) clusters, but it is also possible to form the HNO(3)(NO(2)(-))(H(3)O(+))(H(2)O)(m-2) transition state to form HONO and HNO(3), directly; (iii) the N(2)O(4) isomerization yields the NO(3)(-)NO(+)(H(2)O)(n) cluster, but it does not hydrolyze faster than the NO(2)(+)NO(2)(-)(H(2)O)(n) hydrolysis to directly form the HONO and HNO(3). New insights for hydrolysis of oxides of nitrogen in and on thin water films on surfaces in the atmosphere are discussed.  相似文献   

8.
The regioselectivity of the nitrous acid mediated dealkylation of 4-substituted-N-ethyl-N-methylanilines is a function of the acidity of the reaction mixture. At high acidity deethylation predominates, whereas demethylation is the predominant reaction in nitrosamine formation at pH 2 and above. In some cases the regioselectivity of nitrosative dealkylation changes as the run proceeds. Through the use of the corresponding 4-nitroaniline as the primary substrate, CIDNP, kinetics, kinetic deuterium isotope effects and other transformations involving nitrosations with NO2 or NOBF4 in aprotic solvents, a new mechanism of tertiary amine nitrosation has been deduced and proposed to explain regioselective deethylation. The mechanism involves the oxidation of the substrate to the amine radical cation by NO+. This is followed by the abstraction of a hydrogen atom from the carbon adjacent to the amine nitrogen by NO2 to produce an iminium ion which reacts further to produce the corresponding aldehyde and the nitrosamine. Depending upon the acidity, this process competes with three other mechanistic pathways, two of which give the nitrosamine through the iminium ion, and one leads to the formation of C-nitro compounds. The competing pathways to nitrosamine formation involve NOH elimination from a nitrosammonium ion and deprotonation of the radical cation to give an alpha-amino radical which rapidly oxidized to the iminium ion. Predominant, but not highly regioselective demethylation occurs by these pathways. Nitro compound formation principally arises from the reaction of NO2 with the radical cation followed by deprotonation, but also occurs by para C-nitrosation followed by oxidation.  相似文献   

9.
The radical-radical reaction between the ketenyl radical (HCCO) and nitrogen dioxide (NO(2)) played a very important role in atmospheric and combustion chemistry. Motivated by recent laboratory characterization about the reaction kinetics of ketenyl radical with nitrogen dioxide, in this contribution, we applied the coupled cluster and density functional theory to explore the mechanism of the title reaction. These calculations indicate that the title reaction proceeds mostly through singlet pathways, less go through triplet pathways. It is found that the HCCO + NO(2) reaction initially favors formation of adduct OCCHNO(2) (1) with no barrier. Subsequently, starting from isomer 1, the most feasible pathway is ring closure of 1 to isomer O-cCCHN(O)O (2) followed by CO(2) extrusion to product HCNO + CO(2) (P(1)), which is the major product with predominant yields. Much less competitively, 1 can take the successive 1,3-H- and 1,3-OH-shift interconversion to isomer OCCNOHO (3(a), 3(b), 3(c)) and then to isomer OCOHCNO (4(a), 4(b)), which can finally take a concerted H-shift and C-C bond fission to give HCNO + CO(2) (P(1)). The least competitive pathway is the ring-closure of isomer 3(a) to form isomer O-cCCN(OH)O (5(a), 5(b)) followed by dissociation to HONC + CO(2) (P(2)) through the direct side CO(2) elimination. Because the intermediates and transition states involved in the most favorable channel all lie below the reactants, the title reaction is expected to be rapid, as is confirmed by experiment. Therefore, it can be significant for elimination of nitrogen dioxide pollutants. The present results can lead us to a deep understanding of the mechanism of the title reaction and can be helpful for understanding NO(x)-combustion chemistry.  相似文献   

10.
The mechanisms of the formation of N-nitrosodimethylamine (NDMA) were studied at the MP2/6-311+G(d,p)//B3LYP/6-311+G(d,p) level of theory. We focused on the formation of NDMA from the reactions of dimethylamine (DMA) with nitrous acid and nitrite anion. Our calculations show that the reaction of DMA with nitrous acid is predicted to proceed via two distinct pathways: a concerted or a stepwise mechanism. Moreover, the energy barrier for the stepwise mechanism is somewhat higher than that for the concerted mechanism. The difference in these barriers indicates that the reaction of DMA with nitrous acid via the concerted mechanism is much more favored than that via the stepwise mechanism. In the other situation, our results demonstrate that the reaction of DMA with nitrite anion becomes feasible in the presence of carbon dioxide. Furthermore, this reaction proceeds via a stepwise pathway, in which CO2 first attacks DMA, the result of which then reacts with nitrite anion. It is noteworthy that carbon dioxide appears to be an active catalyst to promote the formation of NDMA. Additionally, the effects of aqueous solvation on the reactions of DMA with nitrous acid and nitrite anion were investigated.  相似文献   

11.
The mechanism of electrophilic aromatic nitration was revisited. Based on the available experimental data and new high-level quantum chemical calculations, a modification of the previous reaction mechanism is proposed involving three separate intermediates on the potential energy diagram of the reaction. The first, originally considered an unoriented pi-complex or electron donor acceptor complex (EDA), involves high electrostatic and charge-transfer interactions between the nitronium ion and the pi-aromatics. It explains the observed low substrate selectivity in nitration with nitronium salts while maintaining high positional selectivity, as well as observed oxygen transfer reactions in the gas phase. The subsequent second intermediate originally considered an oriented "pi-complex" is now best represented by an intimate radical cation-molecule pair, C(6)H(6)(+)(*)()/NO(2), that is, a SET complex, indicative of single-electron transfer from the aromatic pi-system to NO(2)(+). Subsequently, it collapses to afford the final sigma-complex intermediate, that is, an arenium ion. The proposed three discrete intermediates in electrophilic aromatic nitration unify previous mechanistic proposals and also contribute to a better understanding of this fundamentally important reaction. The previously obtained ICR data of oxygen transfer from NO(2)(+) to the aromatic ring are also accommodated by the proposed mechanism. The most stable intermediate of this reaction on its potential energy surface is a complex between phenol and NO(+). The phenol.NO(+) complex decomposes affording C(6)H(6)O(+)(*)/PhOH(+) and NO, in agreement with the ICR results.  相似文献   

12.
CF3O2自由基和NO反应机理的理论研究   总被引:1,自引:0,他引:1  
用密度泛函理论(DFT)的B3LYP方法, 分别在6-31G、6-311G、6-311+G(d)基组水平上研究了CF3O2自由基和NO反应机理. 研究结果表明, CF3O2自由基和NO反应存在三条可行的反应通道, 优化得到了相应的中间体和过渡态. 从活化能看, 通道CH3O2+NO→IM1→TS1→IM2→TS2→CF3O+ONO的活化能最低, 仅为70.86 kJ•mol-1, 是主要反应通道, 主要产物是CF3O和NO2. 而通道CH3O2+NO→IM1→TS3→CF3ONO2和CH3O2+NO→TS4→IM3→TS5→IM4→TS6→CF3O+NOO的活化能较高, 故该反应难以进行.  相似文献   

13.
Nitrosamines are a class of carcinogenic, mutagenic, and teratogenic compounds generally produced from the nitrosation of amine. This paper investigates the mechanism for the formation of nitrosodimethylamine (NDMA) from the nitrosation of dimethylamine (DMA) by four common nitrosating agents (NO(2)(-), ONOO(-), N(2)O(3), and ONCl) in the absence and presence of CO(2) using the DFT method. New insights are provided into the mechanism, emphasizing that the interactions of CO(2) with amine and nitrosating agents are both potentially important in influencing the role of CO(2) (catalyst or inhibitor). The role of CO(2) as catalyst or inhibitor mainly depends on the nitrosating agents involved. That is, CO(2) shows the catalytic effect when the weak nitrosating agent NO(2)(-) or ONOO(-) is involved, whereas it is an inhibitor in the nitrosation induced by the strong nitrosating agent N(2)O(3) or ONCl. To conclude, CO(2) serves as a "double-edged sword" in the nitrosation of amine. The findings will be helpful to expand our understanding of the pathophysiological and environmental significance of CO(2) and to develop efficient methods to prevent the formation of carcinogenic nitrosamines.  相似文献   

14.
This paper (part 1) and the following one (part 2) aim to assess the viability of some tropospheric oxidation channels for two symmetrical alkynes, ethyne (acetylene) and but-2-yne. Paper 1 defines the features of the DFT(B3LYP)/6-311G(3df,2p) energy hypersurface and qualitatively considers the practicability of different pathways through the estimate of free energy barriers. Paper 2 will assess this in more detail by way of master equation simulations. Oxidized in the presence of HO and O2 (with the possible intervention of NO), ethyne and but-2-yne are known to produce mainly glyoxal or dimethylglyoxal and, to a lesser extent, formic or acetic acid. The initial attack by HO gives an adduct, from which several pathways (1a-c, 2a-e) originate. Pathway 1a passes through the 2-oxoethyl (vinoxyl) radical, or the analogous dimethyl-substituted intermediate, which could in principle undergo O2 addition (and subsequently, but through a demanding step, give the dialdehydes). However, in paper 2 it is assessed that the vinoxyl, as a nonthermalized intermediate, will preferentially follow unimolecular pathways to ketene or acetyl. Pathway 2a is the most important pathway: a very steep free energy cascade, started by O2 addition to the initial HO adduct with a concerted barrierless 1,5 H shift, gives a hydroperoxyalkenyloxyl radical intermediate. Peroxy bond cleavage finally produces the dialdehydes and regenerates HO. Pathways 2b and 2c originate from O2 addition to the initial HO adduct and produce, via different ring closures, either dioxetanyl or alkyl dioxiranyl radicals, respectively. Two subsequent fragmentations occur in both cases and give the carboxylic acids and a carbonyl radical, which can indirectly generate hydroxyl. Two further pathways (1c and 2e) see NO intervention onto the peroxyl radicals formed along pathways 1 and 2. Both could enhance dialdehyde production, while simultaneously depressing the carboxylic acid yield.  相似文献   

15.
The concerted mechanism of free radical SH2′ reaction of 2‐substituted allyl chloride was suggested again by inverse secondary α‐deuterium isotope effect. The transition state of free radical SH2′ reaction of allyl chlorides seems to be symmetrical and is not as early as that of a free radical addition reaction.  相似文献   

16.
The complex singlet potential energy surface for the reaction of CH2OH with NO2, including 14 minimum isomers and 28 transition states, is explored theoretically at the B3LYP/6-311G(d,p) and Gaussian-3 (single-point) levels. The initial association between CH2OH and NO2 is found to be the carbon-to-nitrogen approach forming an adduct HOCH2NO2 (1) with no barrier, followed by C-N bond rupture along with a concerted H-shift leading to product P1 (CH2O + trans-HONO), which is the most abundant. Much less competitively, 1 can undergo the C-O bond formation along with C-N bond rupture to isomer HOCH2ONO (2), which will take subsequent cis-trans conversion and dissociation to P2 (HOCHO + HNO), P3 (CH2O + HNO2), and P4 (CH2O + cis-HONO) with comparable yields. The obtained species CH2O in primary product P1 is in good agreement with kinetic detection in experiment. Because the intermediate and transition state involved in the most favorable pathway all lie blow the reactants, the CH2OH + NO2 reaction is expected to be rapid, as is confirmed by experiment. These calculations indicate that the title reaction proceeds mostly through singlet pathways; less go through triplet pathways. In addition, a mechanistic comparison is made with the reactions CH3 + NO2 and CH3O + NO2. The present results can lead us to deeply understand the mechanism of the title reaction and may be helpful for understanding NO2-combustion chemistry.  相似文献   

17.
Metmyoglobin catalyzes the nitration of various phenolic compounds in the presence of nitrite and hydrogen peroxide. The reaction rate depends on the reactant concentrations and shows saturation behavior. Two competing paths are responsible for the reaction. In the first, myoglobin reacts according to a peroxidase-like cycle forming two active intermediates, which can induce one-electron oxidation of the substrates. The MbFe(IV)==O intermediate oxidizes nitrite to nitrogen dioxide, which, after reaction with the phenol or with a phenoxy radical, yields the nitrophenol. In the second mechanism, hydrogen peroxide reacts with iron-bound nitrite to produce an active nitrating species, which we assume to be a protein-bound peroxynitrite species, MbFe(III)--N(O)OO. The high nitrating power of the active species is shown by the fact that the catalytic rate constant is essentially independent of the redox properties of the phenol. The occurrence of one or other of these mechanisms depends on the nitrite concentration: at low [NO(2) (-)] the nitrating agent is nitrogen dioxide, whereas at high [NO(2) (-)] the peroxynitrite path is dominant. The myoglobin derivative that accumulates during turnover depends on the mechanism. When the path involving NO(2) (.) is dominant, the spectrum of the MbFe(IV)==O intermediate is observed. At high nitrite concentration, the Soret band appears at 416 nm, which we attribute to an iron-peroxynitrite species. The metMb/NO(2) (-)/H(2)O(2) system competitively nitrates the heme and the endogenous tyrosine at position 146 of the protein. Phenolic substrates protect Tyr146 from nitration by scavenging the active nitrating species. The exposed Tyr103 residue is not nitrated under the same conditions.  相似文献   

18.
The use of simple calix[4]arenes for chemical conversion of NO2/N2O4 gases is demonstrated in solution and in the solid state. Upon reacting with these gases, calixarenes 1 encapsulate nitrosonium (NO+) cations within their cavities with the formation of stable calixarene-NO+ complexes 2. These complexes act as encapsulated nitrosating reagents; cavity effects control their reactivity and selectivity. Complexes 2 were effectively used for nitrosation of secondary amides 5, including chiral derivatives. Unique size-shape selectivity was observed, allowing for exclusive nitrosation of less crowded N-Me amides 5 a-e (up to 95 % yields). Bulkier N-Alk (Alk>Me) substrates 5 did not react due to the hindered approach to the encapsulated NO+ reagents. Robust, silica gel based calixarene material 3 was prepared, which reversibly traps NO2/N2O4 with the formation of NO+-storing silica gel 4. With material 4, similar size-shape selectivity was observed for nitrosation. The N-Me-N-nitroso derivatives 6 d,e were obtained with approximately 30 % yields, while bulkier amides were nitrosated with much lower yields (<8 %). Enantiomerically pure encapsulating reagent 2 d was tested for nitrosation of racemic amide 5 t, showing modest but reproducible stereoselectivity and approximately 15 % ee. Given high affinity to NO+ species, which can be generated by a number of NOX gases, these supramolecular reagents and materials may be useful for NOX entrapment and separation in the environment and biomedical areas.  相似文献   

19.
The chalcogeno-Diels-Alder reactions of H(2)C=X (X = S, Se, Te) with butadiene, with trans,trans- and cis,trans-2,4-hexadiene, as well as of ethylene with thio-, seleno-, and telluroacrolein and reactions of thioformaldehyde with thioacrolein are examined theoretically. The B3LYP exchange-correlation functional with the 6-31G(d) and LanL2DZ(d) basis sets is employed. Stepwise diradical and concerted pathways are considered for all reactants. A modified concerted mechanism via a pre-reaction complex followed by a concerted transition state is studied for thioformaldehyde reacting with thioacrolein. The stepwise diradical pathways are predicted to be energetically less favorable than the concerted pathways for all cases considered. Even the sterically hindered reaction between selenoformaldehyde and cis,trans-2,4-hexadiene prefers a concerted path. It is a considerable challenge to reverse this energy preference for the concerted reaction given that both electronic and steric factors act to increase or decrease the activation energies of the concerted and diradical stepwise paths in the same way. A modified concerted mechanism operates for reagents with very small HOMO-LUMO gaps such as thioformaldehyde and thioacrolein. This mechanism is completely synchronous, with a vanishingly small barrier.  相似文献   

20.
The kinetics of the Ru(III)-(edta) (edta(4-) = ethylenediaminetetraacetate) catalyzed oxidation of l-arginine by H(2)O(2) mimicking the action of nitric oxide synthases (NOSs) has been studied spectrophotometrically. The time course of the reaction of [Ru(V)(edta)O](-) with l-arginine was followed at 390 nm under catalytic turn-over conditions. Formation of NO in the reacting system has been confirmed with an isolated nitric oxide free radical analyzer. A detailed reaction mechanism in agreement with the spectral and kinetic data is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号