首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The decomposition of methoxide (CH(3)O) on a PdZn alloy is considered to be the rate-limiting step of steam re-forming of methanol over a Pd/ZnO catalyst. Our previous density functional (DF) studies (Langmuir 2004, 20, 8068; Phys. Chem. Chem. Phys. 2004, 6, 4499) revealed only a very low propensity of defect-free flat (111) and (100) PdZn surfaces to promote C-H or C-O bond breaking of CH(3)O. Thus, we applied the same DF periodic slab-model approach to investigate these two routes of CH(3)O decomposition on PdZn(221) surfaces that expose Pd, (221)(Pd), and Zn, (221)(Zn), steps. C-H bond cleavage of CH(3)O is greatly facilitated on (221)(Pd): the calculated activation energy is dramatically reduced, to approximately 50 kJ mol(-1) from approximately 90 kJ mol(-1) on flat PdZn surfaces, increasing the rate constant by a factor of 10(8). The lower barrier is mainly due to a weaker interaction of the reactant CH(3)O and an enhanced interaction of the product CH(2)O with the substrate. The activation energy for C-O bond scission did not decrease on the (221)(Pd) step. On the (221)(Zn) step, the calculated reaction barriers of both decomposition routes are even higher than on flat surfaces, because of the stronger adsorption of CH(3)O. Steps (and other defects) appear to be crucial for methanol steam re-forming on Pd/ZnO catalyst; the stepped surface PdZn(221)(Pd) is a realistic model for studying the reactivity of this catalyst.  相似文献   

2.
Methanol steam reforming (MSR) is an important means to produce hydrogen. While metal Pd shows no selectivity to MSR, PdZn alloy exhibits both high selectivity and activity towards this process. Recently a high temperature desorption peak of formaldehyde is observed when methanol is dosed onto Pd(111) surfaces on which 0.03-0.06 monolayer Zn is deposited. Strikingly such surface which is predominated by Pd atoms was suspected to be active for MSR. To determine the structure on which the high desorption peak is observed and its performance to MSR, we studied adsorption and dehydrogenation of formaldehyde on various models. It is demonstrated that the high desorption peak of CH(2)O may originate from the supported surface clusters. The calculated energy barriers of CH(2)O dehydrogenation show that while formaldehyde can decompose easily into formyl on the supported PdZn and Pd(2) clusters, this process is kinetically difficult on the surface Zn(3) clusters. It is further revealed that formation of dioxymethylene, the proposed precursor for CO(2) production, from formaldehyde and oxygen is feasible on the surface Zn cluster. Based on these calculations we predict that compared with 1:1 PdZn alloy, the activity of the Zn clusters to MSR is lower, though its selectivity may be higher.  相似文献   

3.
We review systematic experimental and theoretical efforts that explored formation, structure and reactivity of PdZn catalysts for methanol steam reforming, a material recently proposed to be superior to the industrially used Cu based catalysts. Experimentally, ordered surface alloys with a Pd : Zn ratio of approximately 1 : 1 were prepared by deposition of thin Zn layers on a Pd(111) surface and characterized by photoelectron spectroscopy and low-energy electron diffraction. The valence band spectrum of the PdZn alloy resembles closely the spectrum of Cu(111), in good agreement with the calculated density of states for a PdZn alloy of 1 : 1 stoichiometry. Among the issues studied with the help of density functional calculations are surface structure and stability of PdZn alloys and effects of Zn segregation in them, and the nature of the most likely water-related surface species present under the conditions of methanol steam reforming. Furthermore, a series of elementary reactions starting with the decomposition of methoxide, CH(3)O, along both C-H and C-O bond scission channels, on various surfaces of the 1 : 1 PdZn alloy [planar (111), (100) and stepped (221)] were quantified in detail thermodynamically and kinetically in comparison with the corresponding reactions on the surfaces Pd(111) and Cu(111). The overall surface reactivity of PdZn alloy was found to be similar to that of metallic Cu. Reactive methanol adsorption was also investigated by in situ X-ray photoelectron spectroscopy for pressures between 3 x 10(-8) and 0.3 mbar.  相似文献   

4.
Methanol steam re-forming, catalyzed by Pd/ZnO, is a potential hydrogen source for fuel cells, in particular in pollution-free vehicles. To contribute to the understanding of pertinent reaction mechanisms, density functional slab model studies on two competing decomposition pathways of adsorbed methoxide (CH(3)O) have been carried out, namely, dehydrogenation to formaldehyde and C-O bond breaking to methyl. For the (111) surfaces of Pd, Cu, and 1:1 Pd-Zn alloy, adsorption complexes of various reactants, intermediates, transition states, and products relevant for the decomposition processes were computationally characterized. On the surface of Pd-Zn alloy, H and all studied C-bound species were found to prefer sites with a majority of Pd atoms, whereas O-bound congeners tend to be located on sites with a majority of Zn atoms. Compared to Pd(111), the adsorption energy of O-bound species was calculated to be larger on PdZn(111), whereas C-bound moieties were less strongly adsorbed. C-H scission of CH(3)O on various substrates under study was demonstrated to proceed easier than C-O bond breaking. The energy barrier for the dehydrogenation of CH(3)O on PdZn(111) (113 kJ mol(-)(1)) and Cu(111) (112 kJ mol(-)(1)) is about 4 times as high as that on Pd(111), due to the fact that CH(3)O interacts more weakly with Pd than with PdZn and Cu surfaces. Calculated results showed that the decomposition of methoxide to formaldehyde is thermodynamically favored on Pd(111), but it is an endothermic process on PdZn(111) and Cu(111) surfaces.  相似文献   

5.
The adsorption and thermal desorption of Zn and ZnO on Pd(111) was studied in the temperature range between 300 and 1300 K with TDS, LEED, and CO adsorption measurements. At temperatures below 400 K, multilayer growth of Zn metal on the Pd(111) surface takes place. At a coverage of 0.75 ML of Zn, a p(2 x 2)-3Zn LEED structure is observed. Increasing the coverage to 3 ML results in a (1 x 1) LEED pattern arising from an ordered Zn multilayer on Pd(111). Thermal desorption of the Zn multilayer state leads to two distinct Zn desorption peaks: a low-temperature desorption peak (400-650 K) arising from upper Zn layers and a second peak (800-1300 K) originating from the residual 1 ML Zn overlayer, which is more strongly bound to the Pd(111) surface and blocks CO adsorption completely. Above 650 K, this Zn adlayer diffuses into the subsurface region and the surface is depleted in Zn, as can be deduced from an increased amount of CO adsorption sites. Deposition of >3 ML of Zn at 750 K leads to the formation of a well-ordered Pd-Zn alloy exhibiting a (6 x 4 square root 3/3)rect. LEED structure. CO adsorption measurements on this surface alloy indicate a high Pd surface concentration and a strong reduction of the CO adsorption energy. Deposition of Zn at T > 373 K in 10(-6) mbar of O2 leads to the formation of an epitaxial (6 x 6) ZnO overlayer on Pd(111). Dissociative desorption of ZnO from this overlayer occurs quantitatively both with respect to Zn and O2 above 750 K, providing a reliable calibration for both ZnO, Zn, and oxygen coverage.  相似文献   

6.
Pd催化甲醇裂解制氢的反应机理   总被引:1,自引:0,他引:1  
基于密度泛函理论(DFT), 研究了甲醇在Pd(111)面上首先发生O—H键断裂的反应历程(CH3OH(s)→CH3O(s)+H(s)→CH2O(s)+2H(s)→CHO(s)+3H(s)→CO(s)+4H(s)). 优化了裂解过程中各反应物、中间体、过渡态和产物的几何构型, 获得了反应路径上各物种的吸附能及各基元反应的活化能数据. 另外, 对甲醇发生C—O键断裂生成CH3(s)和OH(s)的分解过程也进行了模拟计算. 计算结果表明, O—H键的断裂(活化能为103.1 kJ·mol-1)比C—O键的断裂(活化能为249.3 kJ·mol-1)更容易; 甲醇在Pd(111)面上裂解的主要反应历程是: 甲醇首先发生O—H键的断裂, 生成甲氧基中间体(CH3O(s)), 然后甲氧基中间体再逐步脱氢生成CO(s)和H(s). 甲醇发生O—H键断裂的活化能为103.1 kJ·mol-1, 甲氧基上脱氢的活化能为106.7 kJ·mol-1, 两者均有可能是整个裂解反应的速控步骤.  相似文献   

7.
We investigated the decomposition and (partial) oxidation of methanol on Pd based catalysts in an integrated attempt, simultaneously bridging both the pressure and the materials gap. Combined studies were performed on well-defined Pd model catalysts based on ordered Al(2)O(3) and Fe(3)O(4) thin films, on well-defined particles supported on powders and on Pd single crystals. The interaction of Pd nanoparticles and Pd(111) with CH(3)OH and CH(3)OH/O(2) mixtures was examined from ultrahigh vacuum conditions up to ambient pressures, utilizing a broad range of surface specific vibrational spectroscopies which included IRAS, TR-IRAS, PM-IRAS, SFG, and DRIFTS. Detailed kinetic studies in the low pressure region were performed by molecular beam methods, providing comprehensive insights into the microkinetics of the reaction system. The underlying microscopic processes were studied theoretically on the basis of specially designed 3-D nanocluster models containing approximately 10(2) metal atoms. The efficiency of this novel modelling approach was demonstrated by rationalizing and complementing pertinent experimental results. In order to connect these results to the behavior under ambient conditions, kinetic and spectroscopic investigations were performed in reaction cells and lab reactors. Specifically, we focused on (1) particle size and structure dependent effects in methanol oxidation and decomposition, (2) support effects and their relation to activity and selectivity, (3) the influence of poisons such as carbon, and (4) the role of oxide and surface oxide formation on Pd nanoparticles.  相似文献   

8.
Adsorption of methyl chloride and coadsorption of CH3Cl and D2O on Pd(111) surfaces at T=100 K have been studied under ultrahigh-vacuum conditions using femtosecond sum frequency generation (SFG) spectroscopy in the spectral regions of CH and OD bands. On the bare Pd(111) substrate, the CH3Cl coverage dependence of the resonant SFG signal is consistent with a progressive molecular rearrangement starting at half saturation followed by the growth of two ordered monolayers in which the molecular axes are perpendicular to the surface. When CH3Cl is adsorbed on top of predeposited D2O on Pd(111), the SFG signals as a function of the CH3Cl exposure indicate that methyl chloride is adsorbed onto D2O through hydrogen bonding. On the contrary when the adsorption order is reversed the strong decrease of the CH3 signal as a function of the D2O exposure is explained by assuming that water molecules penetrate inside the CH3Cl layers, leading to the formation of disordered CH3Cl clusters. In all cases a nonresonant contribution due to molecular adsorption is observed and it shows a dependence upon surface structure and coverage significantly different from that of the resonant vibrational bands.  相似文献   

9.
Experimental findings imply that edge sites (and other defects) on Pd nanocrystallites exposing mainly (111) facets in supported model catalysts are crucial for catalyst modification via deposition of CH(x) (x = 0-3) byproducts of methanol decomposition. To explore this problem computationally, we applied our recently developed approach to model realistically metal catalyst particles as moderately large three-dimensional crystallites. We present here the first results of this advanced approach where we comprehensively quantify the reactivity of a metal catalyst in an important chemical process. In particular, to unravel the mechanism of how CH(x) species are formed, we carried out density functional calculations of C-O bond scission in methanol and various dehydrogenated intermediates (CH3O, CH2OH, CH2O, CHO, CO), deposited on the cuboctahedron model particle Pd79. We calculated the lowest activation barriers, approximately 130 kJ mol(-1), of C-O bond breaking and the most favorable thermodynamics for the adsorbed species CH3O and CH2OH which feature a C-O single bond. In contrast, dissociation of adsorbed CO was characterized as negligibly slow. From the computational result that the decomposition products CH3 and CH2 preferentially adsorb at edge sites of nanoparticles, we rationalize experimental data on catalyst poisoning.  相似文献   

10.
Methanol decomposition and oxidation on Pd(111) at millibar pressure were studied by in situ polarization-modulation infrared reflection absorption spectroscopy (PM-IRAS), on-line gas chromatography and pre- and postreaction X-ray photoelectron spectroscopy (XPS). Various dehydrogenation products such as methoxy CH3O, formaldehyde CH2O, formyl CHO, and CO could be spectroscopically identified. Methanol oxidation proceeds via dehydrogenation to formaldehyde CH2O, which either desorbs or is further dehydrogenated to CO, which is subsequently oxidized to CO2. Carbonaceous overlayers that are present during the reaction may favorably affect the selectivity toward CH2O. The reaction takes place on metallic Pd, and no indications of an involvement of Pd surface oxide were observed.  相似文献   

11.
We investigated the oxygen-reduction reaction (ORR) on Pd monolayers on various surfaces and on Pd alloys to obtain a substitute for Pt and to elucidate the origin of their activity. The activity of Pd monolayers supported on Ru(0001), Rh(111), Ir(111), Pt(111), and Au(111) increased in the following order: Pd/Ru(0001) < Pd/Ir(111) < Pd/Rh(111) < Pd/Au(111) < Pd/Pt(111). Their activity was correlated with their d-band centers, which were calculated using density functional theory (DFT). We found a volcano-type dependence of activity on the energy of the d-band center of Pd monolayers, with Pd/Pt(111) at the top of the curve. The activity of the non-Pt Pd2Co/C alloy electrocatalyst nanoparticles that we synthesized was comparable to that of commercial Pt-containing catalysts. The kinetics of the ORR on this electrocatalyst predominantly involves a four-electron step reduction with the first electron transfer being the rate-determining step. The downshift of the d-band center of the Pd "skin", which constitutes the alloy surface due to the strong surface segregation of Pd at elevated temperatures, determined its high ORR activity. Additionally, it showed very high methanol tolerance, retaining very high catalytic activity for the ORR at high concentrations of methanol. Provided its stability is satisfactory, this catalyst might possibly replace Pt in fuel-cell cathodes, especially those of direct methanol oxidation fuel cells (DMFCs).  相似文献   

12.
Introduction of a second metal can greatly modify the surface reactivity of a host metal. Recently Jeroro and Vohs found that Pd(111) deposited with 0.03-0.06 monolayer of Zn might possess unique activity to methanol steam reforming reaction. To investigate the distribution of the deposited Zn, we examined the adsorption of CO on two types of model systems. In the first model, Zn is in the top-layer of Pd(111) only, while in the second model Zn is placed in the subsurface exclusively. It is found that Zn atoms in the topmost layer show negligible effect on CO adsorption especially at hollow sites, whereas the second layer Zn atoms affect significantly the interaction of CO with the substrate. It is revealed that the negligible influence of the first layer Zn on CO adsorption is due to the offsetting of the ligand effect by the strain effect. On the other hand, the ligand effect dominates the CO adsorption in the second model where the strain effect is insignificant. It is demonstrated that the d-band centers correlate well with the binding energies of the second model, whereas no such good correlation exists for the first model. Our results show that the subsurface plays a more important role and the observed dramatic modification of surface reactivity of Pd(111) deposited with 0.03-0.06 ML Zn is most likely originated from the subsurface Zn atoms, if the coverage is not underestimated and the deposited Zn atoms are distributed uniformly within a layer.  相似文献   

13.
Catalytic performances of alloy and surface alloy are sensitive to the surface structures and composition. In this paper we present an overall survey of the surface structure of Pd(111) covered with different amount of Zn using Monte Carlo simulations. We demonstrate that the composition of PdZn surface alloy is Zn coverage dependent: the surface concentration of Zn increases with the increase of the deposited Zn. At one or multi-layer of zinc deposited Pd(111), a multilayer 1?:?1 PdZn surface alloy will be formed. Surface alloy islands dominated by palladium are formed at submonolayer Zn coverage. At very low zinc coverage, small palladium ensembles of 3 to 5 Pd atoms exist preferentially on the Pd(111) surface. Our simulated results which are consistent with the pertinent experiments indicate that the unusual high-temperature desorption peak of formaldehyde observed experimentally has likely originated from the small surface ensembles induced by deposited Zn.  相似文献   

14.
C-O bond scission of methoxide species adsorbed at the surface of Pd nanoparticle was studied by DF calculations for the example of cuboctahedral Pd(79). To investigate different locations of adsorbed intermediates as well as the transition state of C-O bond scission, a substrate model was used, which allows one to consider adsorbates without any local geometry restrictions. In contrast to reaction sites on the flat Pd(111) surface and on extended facets, scission of the C-O bond of methoxide at cluster edges is exothermic by approximately 40 kJ mol(-1) and the decomposition product CH(3) is found to be stabilized there. However, the high calculated activation barrier, approximately 140 mol(-1), implies only a very slow reaction compared to dehydrogenation of CH(3)O.  相似文献   

15.
Methanol steam reforming, catalyzed by Pd/ZnO (PdZn alloy), is a potential source of hydrogen for on-board fuel cells. CO has been reported to be a minor side product of methanol decomposition that occurs in parallel to methanol steam reforming on PdZn catalysts. However, fuel cells currently used in vehicles are very sensitive to CO poisoning. To contribute to the understanding of pertinent reaction mechanisms, we employed density functional slab model calculations to study the decomposition of formaldehyde, a key intermediate in methanol decomposition and steam reforming reactions, on planar surfaces of Pd, Cu, and PdZn as well as on a stepped surface of PdZn. The calculated activation energies indicate that dehydrogenation of formaldehyde is favorable on Pd(111), but unfavorable on Cu(111) and PdZn(111). On the stepped PdZn(221) surface, the dehydrogenation process was calculated to be more competitive to formaldehyde desorption than on PdZn(111). Thus, we ascribe the experimentally observed small amount of CO, formed during steam reforming of methanol on the Pd/ZnO catalyst, to occur at metallic Pd species of the catalyst or at defect sites of PdZn alloy.  相似文献   

16.
Systematic density functional studies revealed that PtAu(111) significantly alters the reaction kinetics of methanol oxidation from that on Pt(111). PtAu(111) facilitates the reaction path that starts from cleavage of the OH bond. Furthermore, it prevents CH(2)O from immediate decomposition as on the clean Pt(111) surface. This indicates that proper arrangement of Au and Pt sites offers great opportunities for non-CO(ad) paths for high H productivity in fuel cells.  相似文献   

17.
The density functional theory(DFT) and self-consistent periodic calculation were used to investigate the methanol adsorption on the Pt-Mo(111)/C surface.The adsorption energies,equilibrium geometries and vibration frequencies of CH3OH on nine types of sites on the Pt-Mo(111)/C surface were predicted and the favorite adsorption site for methanol is the top-Pt site.Both sites of valence and conduction bands of doped system have been broadened,which are favorable for electrons to transfer to the cavity.The possible decomposition pathway was investigated with transition state searching and the calculation results indicate that the O-H bond is first broken,and then the methanol decomposes into methoxy.The activation barrier of O-H bond breaking with Pt-Mo catalyst is only 104.8 kJ mol-1,showing that carbon supported Pt-Mo alloys have promoted the decomposition of methanol.Comparing with the adsorption energies of CH3OH on the Pt(111)/C surface and that of CO,the adsorption energies of CO are higher,and Pt(111)/C is liable to be oxidized and loses the activity,which suggests that the catalyst Pt-Mo(111)/C is in favor of decomposing methanol and has better anti-poisoning ability than Pt(111)/C.  相似文献   

18.
甲醇在Pt-Mo(111)/C表面上的吸附   总被引:1,自引:0,他引:1  
采用密度泛函理论和周期平板模型相结合的方法, 对CH3OH分子在Pt-Mo(111)/C表面的顶位、穴位和桥位共计9种吸附模型进行了构型优化、能量计算和频率分析, 结果表明top-Pt位是较有利的吸附位. Mo掺杂后价带与导带位置均有不同程度的降低, 电子结构的变化使得Pt-Mo(111)/C的催化活性提高. 并且在考虑催化剂抗中毒性能时发现: CO在Pt(111)/C面上的吸附能比甲醇吸附能要高, CO在Pt-Mo(111)/C上的吸附能比甲醇的要低, 说明CO在Pt(111)/C面上的吸附会阻碍甲醇的吸附, 并影响催化过程的进行, 而Pt-Mo(111)/C的抗CO中毒化能力增强, 是催化氧化甲醇较好的催化剂.  相似文献   

19.
To explore the effect of surface contaminants on water chemistry at metallic surfaces, adsorption and decomposition of water monomers on clean and X/Pd(111)(X = C, N and O) surfaces are investigated based on density functional theory calculations. It is revealed that H(2)O binds to Pd(111) surface primarily through the mixing of its 1b(1) with the Pd 4d(z(2)) state. A charge accumulation between the oxygen atom of water and the bound Pd atom is calculated, which is found to be relevant to the H(2)O-Pd interaction. Water adsorption results in a reduction of surface work function and the polarization of the X 2p states. The O-H bond scission of H(2)O on the clean Pd(111) is an energy unfavorable process. In the case of X-assisted O-H bond breaking on X/Pd(111) surfaces, however, the reaction barrier tends to be lower than that on the clean surface and decreases from C/Pd(111) to O/Pd(111). In particular, water decomposition is found to become feasible on O/Pd(111), in agreement with the experimental observations. The calculated barrier is demonstrated to be correlated linearly with the density of X 2p states at the Fermi level. A thorough energy analysis demonstrates that the following geometrical and electronic factors favor the barrier reduction on X/Pd(111) with respect to water decomposition on clean Pd(111): (i) the less deformed structure of water in TS; (ii) the decreased bonding competition between the fragments OH and H. The remarkable decrease of the barrier on O/Pd(111) is revealed to be due to the largest stabilization of the split H atom and the least deformation of water in the TS.  相似文献   

20.
Cu-Ni/Zn催化剂甲醇裂解机理原位XPS研究   总被引:6,自引:0,他引:6  
利用原位XPS 和TPD MS 技术研究了Cu Ni/Zn催化剂在甲醇裂解反应中的机理和活性中心.TPD MS脱附产物中仅检测到CH3OH、H2和CO,而未发现CH4和CH3OCH3、HCOOCH3等其它含氧物种,说明在CH3OH裂解过程中仅包括O-H、C-H键的断裂,而不存在C-O键的断裂过程.In situ XPS的研究发现,在反应温度升高到200 ℃以上时,Cu/Zn催化剂中的Zn明显被还原,反映出Cu/Zn催化剂失活过程的Cu Zn合金生成过程,而在Cu Ni/Zn催化剂中未观察到Zn的还原,且表面出现Cu+/Cu0共存的现象.Cu+和Cu0很可能共同构成催化剂表面的活性中心,Cu+应该是在甲醇裂解反应过程中形成的中间态.产物氢从Cu Ni/Zn 催化剂表面脱附为反应的控速步骤.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号