首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The insertion reaction of zinc into the C-I bond of CH(2)I(2) and subsequent cyclopropanation reactions with CH(2)CH(2) have been investigated using B3LYP level density functional theory calculations. The Simmons-Smith cyclopropanation reaction of olefins does not proceed easily due to the relatively large barriers on the insertion and cyclopropanation pathways. The computed results indicate that the IZnCH(2)I molecule is the active reagent in the Simmons-Smith reaction. This is consistent with the IZnCH(2)I reactive species being generated from diiodomethane and a Zn-Cu couple as proposed by several other research groups. The Simmons-Smith IZnCH(2)I carbenoid and CH(2)I-I carbenoid cyclopropanation reactions with olefins are compared. The reactions of olefins with the radicals from the decomposition of the IZnCH(2)I and CH(2)I-I species were also compared. We found that the chemical reactivity of the carbenoid species is dependent on its electrophilic behavior, steric effects, the leaving group character and the mechanism of the cyclopropanation reactions.  相似文献   

2.
A class of zinc reagents (RXZnCH(2)Y) generated with an appropriate organozinc is very effective for the cyclopropanation of olefins. The reactivity and selectivity of these reagents can be regulated by tuning the electronic and steric nature of the RX group on Zn. A reasonable level of enantioselectivity was obtained for the cyclopropanation of unfunctionalized olefins when a chiral (iodomethyl)zinc species was used, providing a valuable approach for the asymmetric cyclopropanation of unfunctionalized olefins.  相似文献   

3.
Trigonal copper(I) complexes of the chiral bidentate ligand (1S,2S)-N,N'-Bis-(mesitylmethyl)-1,2-diphenyl-1,2-ethanediamine ((S,S)-1) have been prepared with hydrocarbon olefins, as well as with allylic alcohols and ethers. The stereochemistry of the complexes has been investigated by 1H NMR spectroscopy and by combined quantum mechanics and molecular mechanics (QM/MM) computational methods. The coordinated chiral nitrogen atoms can display equal (R, R) or opposite (R, S) configuration, the latter being disfavored if steric hindrance is present above and below the coordination plane. Although the complexes exist as rapidly equilibrated mixtures of stereoisomers, one of these is often dominant, and prochiral olefins are coordinated with high enantioface selection. In addition, the [(S,S)-1]-Cu+ fragment selectively recognizes the R enantiomer of secondary allylic alcohols and ethers, as confirmed by the X-ray crystal structure analysis of the adduct with (R)-1-buten-3-ol. The reasons for the observed selectivities have been elucidated, and lead to some implications which are consistent with the enantioselection observed in catalytic cyclopropanation reactions promoted by copper complexes of the same ligand.  相似文献   

4.
Protected racemic and enantiomerically pure 3,4-(aminomethano)prolines rac-9 and (2S,2'R,3R,4R)-9 have been prepared applying a titanium-mediated reductive cyclopropanation as a key step. Thus, cyclopropanations of N,N-dibenzylformamide with titanacyclopropanes generated in situ from racemic or enantiomerically pure tert-butyl N-Boc-3,4-dehydroprolinates rac-8 or (S)-8 proceed diastereoselectively, and furnish the protected racemic and enantiomerically pure diamino acid 9. The latter was incorporated into three tripeptides containing glycyl, alanyl and phenylalanyl moieties.  相似文献   

5.
The synthesis of enantiomerically-enriched trans-cyclopropane amino- and hydroxy-acids can be achieved by intramolecular ring closure in moderate to good yields. The optically active cyclopropane precursors are easily prepared in a short sequence from inexpensive, commercially available olefins and tert-butyl acetate. Several leaving groups and bases were compared for the cyclopropanation step, showing that the diphenylphosphinate and tosyl leaving groups give the best results when used in combination with either LDA or NaHMDS.  相似文献   

6.
Russian Chemical Bulletin - A new method for cyclopropanation of olefins with the BuLi—AlCl3—CH2I2 reagent system was developed. The reaction is tolerant of a wide range of unsaturated...  相似文献   

7.
The cyclopropanation reactions of α, β-epoxy diazomethyl ketones 1 with olefins using Pd(OAc)2 as catalyst is described. Differently substituted epoxy diazo ketones 1a-1f give with cyclohexene exo-norcarane derivatives. 3, 3-Diphenyloxiranyl-2 diazomethyl ketone 1a reacts with olefins like isobutene, E- and Z- butene-2 to give epoxy cyclopropyl ketones. 3, 3-Diphenyloxiranyl-2 cyclopropyl ketones 2a and 9 undergo two consecutive rearrangement reactions with BF3 as catalyst. In the first step an epoxide rearrangement of 9 takes place to give β-ketoaldehyde 10, which in a second step rearranges to enolester 12. The latter reaction is most likely restricted to β-ketoaldehydes which have a quaternary α-C atom. A rationale for this unusual reaction has been proposed.  相似文献   

8.
A family of bis(oxazoline) complexes of coordinatively unsaturated monomeric rhodium(II) (2a,b, 3a,b) are described. These complexes serve as catalysts for cyclopropanation of olefins by ethyl diazoacetate, giving excellent yields (66-94%). Enantioselectivities for the cis product isomers are good (61-84%). The reaction shows an unusual preference for formation of the cis isomers. Catalytic aziridination of N-aryl imines with ethyl diazoacetate is also described.  相似文献   

9.
Summary. The dirhodium(II)-catalyzed intermolecular cyclopropanation of a set of olefins with either diazo free phenyliodonium ylides or diazo compounds afforded cyclopropanes derived from Meldrum’s acid, dimethyl malonate, (silanoxyvinyl)diazoacetates, 3,3,3-trifluoro-2-diazopropionate, ethyl diazo(triethyl)- and (dimethylphenyl)silylacetate with moderate to high yield in either racemic or enantio-enriched forms. The intramolecular cyclopropanation of triethylsilyl-substituted allyl diazoacetates in the presence of the chiral rhodium(II) catalyst [Rh2(s-nttl)4] in toluene afforded the corresponding cyclopropanes with up to 37% ee. An efficient chiral separation method based on enantioselective GC and HPLC was developed. The method provides information about the chemical yields of the cyclopropane products, enantioselectivity, substrate specifity, and catalytic activity of the chiral catalysts used in the inter- and intramolecular cyclopropanation reactions and avoids time-consuming work-up procedures.  相似文献   

10.
A new D2-symmetric chiral porphyrin P6 (2,6-DiMeO-ZhuPhyrin) with enhanced chiral rigidity and polarity was designed and synthesized through incorporation of hydrogen bonding and cyclic structure. Its cobalt(II) complex [Co(P6)] is a highly active and selective catalyst for asymmetric cyclopropanation of alkenes with diazosulfones. The [Co(P6)]-based catalytic system is suitable for various aromatic olefins as well as electron-deficient olefins, including alpha,beta-unsaturated esters, ketones, and nitriles, forming the corresponding cyclopropyl sulfones under mild conditions in high yields and high selectivities. In most cases, both excellent diastereo- and enantioselectivities were achieved.  相似文献   

11.
[reaction: see text] The first cyclopropanation reaction of olefins with Fischer dialkylaminocarbene complexes is presented. The reaction yields 1-aminocyclopropanecarboxylic acid derivatives in a single step, usually with high diastereoselectivity. An approach to the asymmetric version of this reaction is also presented. The synthetic utility of the procedure is exemplified by the synthesis of both cycles of metanoproline in a single step. In addition, the synthesis of the first Fischer carbene containing a halocarbonyl group is reported.  相似文献   

12.
The Simmons-Smith cyclopropanation is a widely used method to synthesize cyclopropanes from alkenes using methylene iodide and a zinc reagent. A novel class of organozinc species, RXZnCH(2)Y, has been found to efficiently cyclopropanate alkenes, including traditionally unreactive unfunctionalized alkenes. The reactivity and selectivity of this class of organozinc reagents can be regulated by tuning the electronic and/or steric nature of the RX group attached to Zn. During recent years, this class of organozinc reagent has been widely used in organic synthesis as a reagent for cyclopropanation and other useful synthetic transformations. Catalytic, asymmetric versions of this reaction have been developed providing high enantiomeric excess for unfunctionalized olefins.  相似文献   

13.
In order to explore the new and efficient cyclopropanation reagents, a theoretical investigation of the cyclopropanation reactions of titanium carbenoid PhOTiCl2CH2Cl and Cl3TiCH2Cl with olefins was given at the B3LYP level of theory. All of the reactions examined displayed similar concerted mechanisms for the cyclopropanation of these reagents. The reactions are predicted to be highly chemical reactivity with low barriers and could be favored in experiment, and the cyclopropanation reaction proceed easily at lower temperature. The computational results are briefly compared to other carbenoid reactions and related species.  相似文献   

14.
Russian Chemical Bulletin - A transition-metal-free method of cyclopropanation of sterically hindered olefins, substituted allylic alcohols, allylamines, and vinyl silyl ethers was developed using...  相似文献   

15.
The first catalytic asymmetric synthesis of highly functionalized difluoromethylated cyclopropanes is described. The method, based on a rhodium‐catalyzed cyclopropanation of difluoromethylated olefins, gives access to a broad range of cyclopropanes bearing ester, ketone, or nitro functional groups. By using Rh2((S )‐BTPCP)4 as a catalyst, the corresponding products were obtained in high yields and high diastereo‐ and enantioselectivities (up 20:1 d.r. and 99 % ee ). This methodology allowed preparation of enantioenriched difluoromethylcyclopropanes for the first time.  相似文献   

16.
The gas-phase cyclopropanation and apparent metathesis reactivity of ligand-supported gold arylidenes with electron-rich olefins is explained by quantum-chemical calculations. A deep potential minimum corresponding to a metal-bound cyclopropane adduct is in agreement with the measured absolute energies of the cyclopropanation and metathesis channels and is also consistent with previously reported electronic effects of arylidenes and supporting phosphorus ylid ligands on the product ratios. In the gas phase, the rate-determining step for the cyclopropanation is dissociation of the Lewis-acidic metal fragment, whereas the metathesis pathway features several rate-limiting transition states that are close in energy to the final product dissociation and hence contribute to the overall reaction rate. Importantly, the presented potential energy surface also accounts for the recently reported gold-catalyzed solution-phase retro-cyclopropanation reactivity.  相似文献   

17.
Reaction of cyclic diazoamides and cyclic olefins or heteroaromatic systems using copper(I) triflate as a catalyst furnished a variety of strained spiro-cyclopropanooxindoles in a diastereoselective manner under mild reaction conditions. The effect of copper(I) triflate and rhodium(II) acetate catalysts on the cyclopropanation was also studied.  相似文献   

18.
姚小泉  陈惠麟  郑卓 《化学进展》2000,12(3):282-295
本文从手性配体的发展出发, 综述了烯烃不对称环丙烷化反应近10 年来的研究进展, 对半咕啉、双 唑啉等C2 轴手性配体在该反应中的应用做了详细论述, 介绍了反应机理研究的最新进展, 并探讨了该反应在走向工业应用过程中所面临的主要问题。  相似文献   

19.
Extensive investigations of asymmetric intermolecular cyclopropanation of terminal alkenes with diazoacetates catalyzed by ruthenium porphyrin [Ru(P*)(CO)(EtOH)] (1, H2P = 5,10,15,20-tetrakis[(1S,4R,5R,8S)-1,2,3,4,5,6,7,8-octahydro-1,4:5,8-dimethanoanthracene-9-yl]porphyrin) and the application of catalyst 1 to asymmetric intramolecular cyclopropanation of allylic or homoallylic diazoacetates are described. The intermolecular cyclopropanation of styrene and its derivatives with ethyl diazoacetate afforded the corresponding cyclopropyl esters in up to 98% ee with high trans/cis ratios of up to 36 and extremely high catalyst turnovers of up to 1.1 x 10(4). Examination of the effects of temperature, diazoacetate, solvent, and substituent in the intermolecular cyclopropanation reveals that (i) both enantioselectivity and trans selectivity increase with decreasing temperature, (ii) sterically encumbered diazoacetates N2CHCO2R, such as R = Bu(t), and donor solvents, such as diethyl ether and tetrahydrofuran, are beneficial to the trans selectivity, and (iii) electron-donating para substituents on styrene accelerate the cyclopropanations, with the log(k(X)/k(H)) vs sigma(+) plot for para-substituted styrenes p-X-C6H4CH=CH2 (X = MeO, Me, Cl, CF3) exhibiting good linearity with a small negative rho(+) value of -0.44 +/- 0.09. In the case of intramolecular cyclopropanation, complex 1 promoted the decomposition of a series of allylic diazoacetates to form the cyclopropyl lactones in up to 85% ee, contributing the first efficient metalloporphyrin catalyst for an asymmetric intramolecular cyclopropanation. Both the inter- and intramolecular cyclopropanations were proposed to proceed via a reactive chiral ruthenium carbene intermediate. The enantioselectivities in these processes were rationalized on the basis of the X-ray crystal structures of closely related stable chiral carbene complexes [Ru(P*)(CPh2)] (2) and [Ru(P*)(C(Ph)CO2CH2CH=CH2)] (3) obtained from reactions of complex 1 with N2CPh2 and N2C(Ph)CO2CH2CH=CH2, respectively.  相似文献   

20.
Cluster excision of polymeric {Mo3S7Cl4}n phases with chiral phosphane (+)-1,2-bis[(2R,5R)-2,5-(dimethylphospholan-1-yl)]ethane ((R,R)-Me-BPE) or with its enantiomer ((S,S)-Me-BPE) yields the stereoselective formation of the trinuclear cluster complexes [Mo3S4{(R,R)-Me-BPE}3Cl3]+ ([(P)-1]+) and [Mo3S4{(S,S)-Me-BPE}3Cl3]+ ([(M)-1]+), respectively. These complexes possess an incomplete cuboidal structure with the metal atoms defining an equilateral triangle and one capping and three bridging sulfur atoms. The P and M symbols refer to the rotation of the chlorine atoms around the C3 axis, with the capping sulphur atom pointing towards the viewer. Incorporation of copper into these trinuclear complexes affords heterodimetallic cubane-type compounds of formula [Mo3CuS4{(R,R)-Me-BPE}3Cl4]+ ([(P)-2]+) or [Mo3CuS4{(S,S)-Me-BPE}3Cl4]+ ([(M)-2]+), respectively, for which the chirality of the trinuclear precursor is preserved in the final product. Cationic complexes [(P)-1]+, [(M)-1]+, [(P)-2]+, and [(M)-2]+ combine the chirality of the metal cluster framework with that of the optically active diphosphane ligands. The known racemic [Mo3CuS4(dmpe)3Cl4]+ cluster (dmpe = 1,2-bis(dimethylphosphanyl)ethane) as well as the new enantiomerically pure Mo3CuS4 [(P)-2]+ and [(M)-2]+ complexes are efficient catalysts for the intramolecular cyclopropanation of 1-diazo-5-hexen-2-one (3) and for the intermolecular cyclopropanation of alkenes, such as styrene and 2-phenylpropene, with ethyl diazoacetate. In all cases, the cyclopropanation products were obtained in high yields. The diastereoselectivity in the intermolecular cyclopropanation of the alkenes and the enantioselectivity in the inter- or intramolecular processes are only moderate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号