首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PX(4) (+)[Al(OR)(4)](-) (X=I: 1 a, X=Br: 1 b) was prepared from X(2), PX(3), and Ag[Al(OR)(4)] [R=C(CF(3))(3)] in CH(2)Cl(2) at -30 degrees C in 69-86 % yield. P(2)X(5) (+) salts were prepared from 2 PX(3) and Ag[Al(OR)(4)] in CH(2)Cl(2) at -30 degrees C yielding almost quantitatively P(2)X(5) (+)[Al(OR)(4)](-) (X=I: 3 a, X=Br: 3 b). The phosphorus-rich P(5)X(2) (+) salts arose from the reaction of cold (-78 degrees C) mixtures of PX(3), P(4), and Ag[Al(OR)(4)] giving P(5)X(2) (+)[Al(OR)(4)](-) (X=I: 4 a, X=Br: 4 b) with a C(2v)-symmetric P(5) cage. Silver salt metathesis presumably generated unstable PX(2) (+) cations from PX(3) and Ag[Al(OR)(4)] (X=Br, I) that acted as electrophilic carbene analogues and inserted into the Xbond;X (Pbond;X/Pbond;P) bond of X(2) (PX(3)/P(4)) leading to the highly electrophilic and CH(2)Cl(2)-soluble PX(4) (+) (P(2)X(5) (+)/P(5)X(2) (+)) salts. Reactions that aimed to synthesize P(2)I(3) (+) from P(2)I(4) and Ag[Al(OR)(4)] instead led to anion decomposition and the formation of P(2)I(5)(CS(2))(+)[(RO)(3)Al-F-Al(OR)(3)](-) (5). All salts were characterized by variable-temperature solution NMR studies (3 b also by (31)P MAS NMR), Raman and/or IR spectroscopy as well as X-ray crystallography (with the exception of 4 a). The thermochemical volumes of the Pbond;X cations are 121 (PBr(4) (+)), 161 (PI(4) (+)), 194 (P(2)Br(5) (+)), 271 (P(2)I(5) (+)), and 180 A(3) (P(5)Br(2) (+)). The observed reactions were fully accounted for by thermochemical calculations based on (RI-)MP2/TZVPP ab initio results and COSMO solvation enthalpy calculations (CH(2)Cl(2) solution). The enthalpies of formation of the gaseous Pbond;X cations were derived as +764 (PI(4) (+)), +617 (PBr(4) (+)), +749 (P(2)I(5) (+)), +579 (P(2)Br(5) (+)), +762 (P(5)I(2) (+)), and +705 kJ mol(-1) (P(5)Br(2) (+)). The insertion of the intermediately prepared carbene analogue PX(2) (+) cations into the respective bonds were calculated, at the (RI-)MP2/TZVPP level, to be exergonic at 298 K in CH(2)Cl(2) by Delta(r)G(CH(2)Cl(2))=-133.5 (PI(4) (+)), -183.9 (PBr(4) (+)), -106.5 (P(2)I(5) (+)), -81.5 (P(2)Br(5) (+)), -113.2 (P(5)I(2) (+)), and -114.5 kJ mol(-1) (P(5)Br(2) (+)).  相似文献   

2.
Photodissociation spectra of Mg+-XCH3 (X=F, Cl, Br, and I) complexes have been measured in the ultraviolet region (225-415 nm). Several fragment ions with and without charge transfer (CT), Mg+, XCH3+, MgX+, MgCH3+, CH3+, and X+, were formed by evaporation (intermolecular bond dissociation) and intracluster reaction (intramolecular bond dissociation) via excited electronic states. Branching ratios of these ions were found to depend both on absorption bands and on halogen atoms. The ground states of the complexes were calculated to have geometries in which the Mg atom lies next to X atom of methyl halide molecules. Positive charges of the complexes are confirmed to be almost localized on Mg. Observed absorption bands were assigned to the transitions of the Mg+2P-2S atomic line perturbed by interactions with methyl halide molecules. Branching ratios of fragment ions can be partly explained by the stability of fragment ions and neutral counterparts. From the excited state potential energy curves along the Mg-X bond distance, dissociation reaction after CT was concluded to proceed predissociatively; potential curve crossings between the initially excited states and repulsive CT states may have a crucial role in the formation of CH3+, XCH3+, and X+. In particular, XCH3+ ions were formed via repulsive CT states having a character of electron excitation from Xnp to Mg+3s.  相似文献   

3.
Ultrafast photochemistry of the complexes trans(X,X)-[Ru(X)(2)(CO)(2)(bpy)] (X = Cl, Br, I) was studied in order to understand excited-state reactivity of equatorial CO ligands, coordinated trans to the 2,2'-bipyridine ligand (bpy). TD-DFT calculations have identified the lowest electronic transitions and singlet excited states as mixed X -->bpy/Ru --> bpy ligand to ligand/metal to ligand charge transfer (LLCT/MLCT). Picosecond time-resolved IR spectroscopy in the region of nu(CO) vibrations has revealed that, for X = Cl and Br, subpicosecond CO dissociation is accompanied by bending of the X-Ru-X moiety, producing a pentacoordinated intermediate trans(X,X)-[Ru(X)(2)(CO)(bpy)]. Final movement of an axial halide ligand to the vacant equatorial position and solvent (CH(3)CN) coordination follows with a time constant of 13-15 ps, forming the photoproduct cis(X,X)-[Ru(X)(2)(CO)(CH(3)CN)(bpy)]. For X = I, the optically populated (1)LLCT/MLCT excited state undergoes a simultaneous subpicosecond CO dissociation and relaxation to a triplet IRuI-localized excited state which involves population of an orbital that is sigma-antibonding with respect to the axial I-Ru-I bonds. Vibrationally relaxed photoproduct cis(I,I)-[Ru(I)(2)(CO)(CH(3)CN)(bpy)] is formed with a time constant of ca. 55 ps. The triplet excited state is unreactive, decaying to the ground state with a 155 ps lifetime. The experimentally observed photochemical intermediates and excited states were assigned by comparing calculated (DFT) and experimental IR spectra. The different behavior of the chloro and bromo complexes from that of the iodo complex is caused by different characters of the lowest triplet excited states.  相似文献   

4.
By preparing methyl bromide (CH3Br) in selected rotational levels of the CH3Br(X(1)A1; v1 = 1) state with infrared (IR) laser excitation prior to vacuum-ultraviolet (VUV) laser pulsed field ionization-photoelectron (PFI-PE) measurements, we have observed rotationally resolved photoionization transitions to the CH3Br(+)(X(2)E(3/2); v1(+) = 1) state, where v1 and v1(+) are the symmetric C-H stretching vibrational mode for the neutral and cation, respectively. The VUV-PFI-PE origin band for CH3Br(+)(X(2)E(3/2)) has also been measured. The simulation of these IR-VUV-PFI-PE and VUV-PFI-PE spectra have allowed the determination of the v1(+) vibrational frequency (2901.8 +/- 0.5 cm(-1)) and the ionization energies of the origin band (85 028.3 +/- 0.5 cm(-1)) and the v1(+) = 1 <-- v1 = 1 band (84 957.9 +/- 0.5 cm(-1)).  相似文献   

5.
A series acetals/ketals of aldehydes and ketones formed by the reaction of two photolabile protecting groups, bis(2-nitrophenyl) ethanediol and bis(4,5-dimethoxy-2-nitrophenyl) ethanediol (I and II, respectively), were analysed under EI, LSIMS, ESI and APCI conditions to obtain molecular weights as well as structural information. The EI and LSIMS techniques failed to give molecular weight information. The positive ESI yielded [M + H](+) ions only for I; however, with added Na(+) both I and II formed [M + Na](+) adducts. But upon decomposition, the [M + Na](+) ions yielded Na(+) ion as the only product ion. Similarly, under negative ion ESI conditions both I and II gave molecular weight information by forming adduct ions with halide anions (F(-), Cl(-), Br(-) and I(-)); however, they did not give structural information as they resulted in only the halide anion as the abundant fragment ion upon dissociation. All the compounds formed abundant M(-*) ions under negative ion APCI conditions, and their MS/MS spectra showed characteristic fragment ions; hence the acetals/ketals of I and II could be successfully characterized under negative ion APCI conditions.  相似文献   

6.
The character and dynamics of the low-lying excited states of [Ru(X)(X')(CO)2(iPr-dab)] (X=X'=Cl or I; X=Me, X'=I; X=SnPh3, X'=Cl; iPr-dab=N, N'-diisopropyl-1,4-diazabutadiene) were studied experimentally by pico- and nanosecond time-resolved IR spectroscopy (TRIR) and (for X=X'=Cl or I) computationally using density functional theory (DFT) and time-dependent DFT (TD-DFT) techniques. The lowest allowed electronic transition occurs between 390 and 460 nm and involves charge transfer from the Ru(halide)(CO) 2 unit to iPr-dab, denoted (1)MLCT/XLCT (metal-to-ligand/halide-to-ligand charge transfer). The lowest triplet state is well modeled by UKS-DFT-CPCM calculations, which quite accurately reproduce the excited-state IR spectrum in the nu(CO) region. It has a (3)MLCT/XLCT character with an intraligand (iPr-dab) (3)pipi* admixture. TRIR spectra of the lowest triplet excited state show two nu(CO) bands that are shifted to higher energies from their corresponding ground-state positions. The magnitude of this upward shift increases as a function of the ligands X and X' [(I)2 < (Sn)(Cl) < (Me)(I) < (Cl)2] and reveals increasing contribution of the Ru(CO)2-->dab MLCT character to the excited state. The lowest triplet state of [Ru(Cl)2(CO)2(iPr-dab)] undergoes a approximately 10 ps relaxation that is followed by CO dissociation, producing cis(CO,CH 3CN),trans(Cl,Cl)-[Ru(Cl)2(CH 3CN)(CO)(iPr-dab)] with a unity quantum yield and 7.2 ns lifetime and without any observable intermediate. To our knowledge, this is the first example of a "slow" CO dissociation from a thermally equilibrated triplet charge-transfer excited state.  相似文献   

7.
By interaction of MoX(3)(THF)(3) with [Cat]X in THF, the salts [Cat][MoX(4)(THF)(2)] have been synthesized [X = I, Cat = PPh(4), NBu(4), NPr(4), (Ph(3)P)(2)N; X = Br, Cat = NBu(4), PPh(4) (Ph(3)P)(2)N]. Mixed-halide species [MoX(3)Y(THF)(2)](-) (X, Y = Cl, Br, I) have also been generated in solution and investigated by (1)H-NMR. When the tetraiodo, tetrabromo, and mixed bromoiodo salts are dissolved in CH(2)Cl(2), clean loss of all coordinated THF is observed by (1)H-NMR. On the other hand, [MoCl(4)(THF)(2)](-) loses only 1.5 THF/Mo. The salts [Cat](3)[Mo(3)X(12)] (X = Br, I) have been isolated from [Cat][MoX(4)(THF)(2)] or by running the reaction between MoX(3)(THF)(3) and [Cat]X directly in CH(2)Cl(2). The crystal structure of [PPh(4)](3)[Mo(3)I(12)] exhibits a linear face-sharing trioctahedron for the trianion: triclinic, space group P&onemacr;; a = 11.385(2), b = 12.697(3), c = 16.849(2) ?; alpha = 76.65(2), beta = 71.967(12), gamma = 84.56(2) degrees; Z = 1; 431 parameters and 3957 data with I > 2sigma(I). The metal-metal distance is 3.258(2) ?. Structural and magnetic data are consistent with the presence of a metal-metal sigma bond order of (1)/(2) and with the remaining 7 electrons being located in 7 substantially nonbonding orbitals. The ground state of the molecule is predicted to be subject to a Jahn-Teller distortion, which is experimentally apparent from the nature of the thermal ellipsoid of the central Mo atom. The [Mo(3)X(12)](3)(-) ions reacts with phosphines (PMe(3), dppe) to form products of lower nuclearity by rupture of the bridging Mo-X bonds.  相似文献   

8.
Ionization of bromomethanes (CH3Br, CH2Br2, and CHBr3) upon collision with metastable He*(2(3)S) atoms has been studied by means of collision-energy-resolved Penning ionization electron spectroscopy. Lone-pair (nBr) orbitals of Br4p characters have larger ionization cross sections than sigma(C-Br) orbitals. The collision-energy dependence of the partial ionization cross sections shows that the interaction potential between the molecule and the He*(2(3)S) atom is highly anisotropic around CH3Br or CH2Br2, while isotropic attractive interactions are found for CHBr3. Bands observed at electron energies of approximately 2 eV in the He*(2(3)S) Penning ionization electron spectra (PIES) of CH2Br2 and CHBr3 have no counterpart in ultraviolet (He I) photoionization spectra and theoretical (third-order algebraic diagrammatic construction) one-electron and shake-up ionization spectra. Energy analysis of the processes involved demonstrates that these bands and further bands overlapping with sigma(C-Br) or piCH2 levels are related to autoionization of dissociating (He+ - Br-) pairs. Similarly, a band at an electron energy of approximately 1 eV in the He*(2(3)S) PIES spectra of CH3Br has been ascribed to autoionizing Br** atoms released by dissociation of (unidentified) excited states of the target molecule. A further autoionization (S) band can be discerned at approximately 1 eV below the lone-pair nBr bands in the He*(2(3)S) PIES spectrum of CHBr3. This band has been ascribed to the decay of autoionizing Rydberg states of the target molecule (M**) into vibrationally excited states of the molecular ion. It was found that for this transition, the interaction potential that prevails in the entrance channel is merely attractive.  相似文献   

9.
By reaction of Na2[B9H9] with the appropriate N-halogenosuccinimide, the monohalogenated anion [1-XB9H8]2- (X = Cl, Br, or I) is formed. The X-ray diffraction analyses performed on single crystals of (Ph4P)2[1-XB9H8].CH3CN (X = Cl, Br, I) reveal that the tricapped trigonal prismatic geometry of the cluster is retained after substitution in the 1-position. Crystallographic data are as follows for (Ph4P)2[1-XB9H8].CH3CN. X = Cl, Br: monoclinic, space group P2(1), a = 10.7 A, b = 32.9 A, c = 13.8 A, beta = 96 degrees, Z = 4, R1 = 0.038 and R1 = 0.036, respectively. X = I: monoclinic, space group P2(1)/n, a = 10.5 A, b = 13.6 A, c = 33.4 A, beta = 94 degrees, Z = 4, R1 = 0.094. The compounds have been characterized by vibrational and 11B NMR spectroscopy as well.  相似文献   

10.
Structure and properties of hydrated clusters of halogen gas, X2.nH2O (X = Cl, Br, and I; n = 1-8) are presented following first principle based electronic structure theory, namely, BHHLYP density functional and second-order Moller-Plesset perturbation (MP2) methods. Several geometrical arrangements are considered as initial guess structures to look for the minimum energy equilibrium structures by applying the 6-311++G(d,p) set of the basis function. Results on X2-water clusters (X = Br and I) suggest that X2 exists as a charge separated ion pair, X+delta-X-delta in the hydrated clusters, X2.nH2O (n > or = 2). Though the optimized structures of Cl2.nH2O clusters look like X2.nH2O (X = Br and I) clusters, Cl2 does not exist as a charge separated ion pair in the presence of solvent water molecules. The calculated interaction energy between X2 and solvent water cluster increases from Cl2.nH2O to I2.nH2O clusters, suggesting solubility of gas-phase I2 in water to be a maximum among these three systems. Static and dynamic polarizabilities of hydrated X2 clusters, X2.nH2O, are calculated and observed to vary linearly with the size (n) of these water clusters with correlation coefficient >0.999. This suggests that the polarizability of the larger size hydrated clusters can be reliably predicted. Static and dynamic polarizabilities of these hydrated clusters grow exponentially with the frequency of an external applied field for a particular size (n) of hydrated cluster.  相似文献   

11.
Post-translational modifications (PTMs) of proteins are important in the activation, localization, and regulation of protein function in vivo. The usefulness of electron capture dissociation (ECD) and electron-transfer dissociation (ETD) in tandem mass spectrometry (MS/MS) using low-energy (LE) trap type mass spectrometer is associated with no loss of a labile PTM group regarding peptide and protein sequencing. The experimental results of high-energy (HE) collision induced dissociation (CID) using the Xe and Cs targets and LE-ETD were compared for doubly-phosphorylated peptides TGFLT(p)EY(p)VATR (1). Although HE-CID using the Xe target did not provide information on the amino acid sequence, HE-CID using the Cs target provided all the z-type ions without loss of the phosphate groups as a result of HE-ETD process, while LE-ETD using fluoranthene anion gave only z-type ions from z5 to z11. The difference in the results of HE-CID between the Xe and Cs targets demonstrated that HE-ETD process with the Cs target took place much more dominantly than collisional activation. The difference between HE-ETD using Cs targets and LE-ETD using the anion demonstrated that mass discrimination was much weaker in the high-energy process. HE-ETD was also applied to three other phosphopeptides YGGMHRQEX(p)VDC (2: X = S, 3: X = T, 4: X = Y). The HE-CID spectra of the doubly-protonated phosphopeptides (= [M + 2H]2+) of 2, 3, and 4 using the Cs target showed a very similar feature that the c-type ions from c7 to c11 and the z-type ions from z7 to z11 were formed via N-Cα bond cleavage without a loss of the phosphate group.  相似文献   

12.
The Jahn-Teller effect in CH(3)CN(+) (X(2)E) and CD(3)CN(+) (X(2)E) has been found experimentally by zero kinetic energy (ZEKE) photoelectron spectroscopy using coherent extreme ultraviolet (XUV) radiation. The vibronic bands of CH(3)CN(+) (X(2)E) and CD(3)CN(+) (X(2)E) at about 4500 cm(-1) above the ground states have been recorded. The spectra consist mainly of the Jahn-Teller active C-C[triple bond]N bending (v(8)), the CN stretching (v(2)), the CH(3) (CD(3)) deforming (v(6)), and the C-C stretching (v(4)) vibronic excitations. The Jahn-Teller active vibronic bands (v(8)) have been assigned with a harmonic model including linear and quadratic Jahn-Teller coupling terms, taking into account only the single mode vibronic excitation. The ionization potentials of CH(3)CN and CD(3)CN have also been determined, and their values are 12.2040(+/-0.001) and 12.2286(+/-0.001) eV, respectively.  相似文献   

13.
Gas-phase infrared spectra of polyphosphazenes (phosphonitrilic halides trimer), (NPX2)3 where X=F, Cl and Br have been recorded. The molecules were generated for the first time by an on-line process using solid (NPCl2)3 as a precursor passed over heated sodium fluoride and potassium bromide at about 550 and 700 degrees C for (NPF2)3 and (NPBr2)3 production, respectively. The products were characterized by the infrared spectra of their vapors. The low-resolution gas-phase Fourier transform infrared spectra reported for the first time show strong bands centered at 1295, 1215 and 1200 cm-1, assigned to nu7(E'), in plane PN stretching mode of (NPX2)3, where X=F, Cl and Br, respectively.  相似文献   

14.
The atmospherically relevant reactions between dimethyl selenide (DMSe) and the molecular halogens (X(2) = Cl(2), Br(2), and I(2)) have been studied with ab initio calculations at the MP2/aug-cc-pVDZ level of theory. Geometry optimization calculations showed that the reactions proceed from the reagents to the products (CH(3)SeCH(2)X + HX) via three minima, a van der Waals adduct (DMSe:X(2)), a covalently bound intermediate (DMSeX(2)), and a product-like complex (CH(3)SeCH(2)X:HX). The computed potential energy surfaces are used to predict what molecular species are likely to be observed in spectroscopic experiments such as gas-phase photoelectron spectroscopy and infrared matrix isolation spectroscopy. It is concluded that, for the reactions of DMSe with Cl(2) and Br(2), the covalent intermediate should be seen in spectroscopic experiments, whereas, in the DMSe + I(2) reaction, the van der Waals adduct DMSe:I(2) should be observed. Comparison is made with previous related calculations and experiments on dimethyl sulfide (DMS) with molecular halogens. The relevance of the results to atmospheric chemistry is discussed. The DMSeX(2) and DMSe:X(2) intermediates are likely to be reservoirs of molecular halogens in the atmosphere which will lead on photolysis to ozone depletion.  相似文献   

15.
The emission spectra of the solids [n-Bu(4)N](2)Tc(2)X(8) (X = Cl, Br) have been investigated at room temperature and 77 K. In each case, the emission originates in the (1)δ-δ* excited state, as with the rhenium homologues, but has a shorter lifetime.  相似文献   

16.
Infrared and laser Raman spectra of [Ni(II)(diars)2X]X, (X=Cl, Br and I) have been used as probes to determine the structures of chelated diarsine molecules. It has been observed that the effects of metal chelation and coordination geometry give rise to frequency shifts in these complexes. The variation in vibrational spectroscopic features indicates reduction in the symmetry of the complexes in the crystalline environment. The effect of halogen on the Ni-halogen stretching frequency of these square pyramidal complexes is not as significant as observed in the case of octahedral complexes.  相似文献   

17.
Whereas the reaction of the anionic palladium metallacycle [K[Pd(CH2CMe2-o-C6H4)(kappa2-Tp)]] with CH2Cl2 leads to the isolation of the stable Pd(IV) chloromethyl complex [Pd(CH2CMe2-o-C6H4)(kappa3-Tp)(CH2Cl)], the analogous reactions with CH2Br2 and CH2I2 give rise to the six membered metallacycles [Pd(CH2CMe2-o-C6H4(CH2))(kappa3-Tp)X](X = Br or I), as a result of the formal insertion of CH2 into the Pd-C(aryl) bond.  相似文献   

18.
The electronic structures and the halogen inductive effects on the acetate anion were investigated in XCH2COO- (X=F,Cl,Br) by photoelectron spectroscopy (PES) and ab initio calculations. The PES spectra indicated that the electron binding energies increased in the order of FCl>Br. These systematic changes of detachment energy and IPs were explained by examining the charge redistributions upon detaching electrons.  相似文献   

19.
Structures of protonated alane-Lewis base donor-acceptor complexes H2X2AlNHn(CH3)(3-n)+ (X = F, Cl, and Br; n = 0-3) as well as their neutral parents were investigated. All the monocations H2X2AlNHn(CH3)(3-n)+ are Al-H protonated involving hypercoordinated alane with a three-center two-electron bond and adopt the C(s) symmetry arrangement. The energetic results show that the protonated alane-Lewis complexes are more stable than the neutral ones. They also show that this stability decreases on descending in the corresponding periodic table column from fluorine to bromine atoms. The calculated protonation energies of HX2AlNHn(CH3)(3-n) to form H2X2AlNHn(CH3)(3-n)+ were found to be highly exothermic. The possible dissociation of the cations H2X2AlNHn(CH3)(3-n)+ into X2AlNHn(CH3)(3-n)+ and molecular H2 is calculated to be endothermic.  相似文献   

20.
Doubly charged tungsten hexacarbonyl W(CO)(6) (2+) ions were made to collide with Ar and K targets to give singly and doubly charged positive ions by collision-induced dissociation (CID). The resulting ions were analyzed and detected by using a spherical electrostatic analyzer. Whereas the doubly charged fragment ions resulting from collisional activation (CA) were dominant with the Ar target, singly charged fragment ions resulting from electron transfer were dominant with the K target. The internal energy deposition in collisionally activated dissociation (CAD) evaluated with the Ar target was broad and decreased with increasing internal energy. The predominant peaks observed with the K target were associated with singly charged W(CO)(2) (+) and W(CO)(3) (+) ions: these ions were not the result of CA, but arose from dissociation induced by electron transfer (DIET). The internal energy deposition resulting from the electron transfer was very narrow and centered at a particular energy, 7.8 eV below the energy level of the W(CO)(6) (2+) ion. This narrow internal energy distribution was explained in terms of electron transfer by Landau-Zener potential crossing at a separation of 5.9 x 10(-8) cm between a W(CO)(6) (2+) ion and a K atom, and the coulombic repulsion between singly charged ions in the exit channel. A large cross section of 1.1 x 10(-14) cm(2) was estimated for electron capture of the doubly charged W(CO)(6) (2+) ion from the alkali metal target, whose ionization energy is very low. The term "collision-induced dissociation," taken literally, includes all dissociation processes induced by collision, and therefore encompasses both CAD and DIET processes in the present work. Although the terms CID and CAD have been defined similarly, we would like to propose that they should not be used interchangeably, on the basis that there are differences in the observed ions and in their intensities with Ar and K targets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号