首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Complexes of the type [Ni (L) (H2O)] Cl2.nH2O, where L = [(pyridine-2-carboxaldhyde)-3-isatin]-bishydrazone (cpish), [(2-acetyl pyridine)-3-isatin]-bishydrazone (apish) and [(2-benzoyl pyridine)-3-isatin]-bishydrazone (bpish) have been synthesized and characterized on the bases of elemental analysis, molar conductance, IR, NMR, electronic spectra and thermal analysis (TGA and DTA). Moreover, the stoichiometry and the formation constants of these complexes have been determined spectrophotometrically. Kinetics and thermodynamic parameters of the thermal decomposition have been computed from the thermal data using Coats and Redfern method, which confirm first-order kinetics. The bioefficacy of the ligands and their complexes have been examined for their in vitro antibacterial and antifungal activity against many types of bacteria and anti fungal cultures, which are common contaminants of the environment in Egypt, and the results indicate that the ligands and their metal complexes possess notable antimicrobial activity. Investigation of their interaction with CT-DNA under physiological conditions, using spectroscopic (UV–visible) and hydrodynamic techniques (viscosity measurements). Binding constant "K b" obtained from spectroscopic methods revealed significant binding of compounds with DNA via intercalation, Furthermore, free energies of compounds–DNA interactions indicated spontaneity of their binding.  相似文献   

2.
A variety of neutral palladium(II) complexes [Pd(L–L)Cl2] containing 1,3-di(2-pyridyl)propane (1), 1,3-bis(2-pyridyl)-2-pentylpropane (2), 1,3-bis(2-pyridyl)-2-phenylpropane (3a), 1,3-bis(2-pyridyl)-2-tolylpropane (4), and 1,3-bis(2-pyridyl)-2-ferrocenylpropane (5) as chelate ligands (L–L) have been synthesized. The crystal structures of 1,3-diphenyl-2,4-di-pyridin-2-yl-butan-1-ol (3b), 5, [(2)PdCl2], [(4)PdCl2], and [(5)PdCl2] have been determined and show a square planar geometry at palladium(II). The neutral complexes were tested in the polymerization of norbornene and copolymerization of norbornene with norbornene derivatives. The complex bearing the pentyl group exhibited high reactivity to give up to 5.9×105 in molecular weight for the homopolymerization. When [(4)PdCl2] or [(5)PdCl2] was used as a catalyst, homopolymers insoluble at 150 °C in trichlorobenzene were obtained. However, copolymerization of norbornene with norbornene derivatives 8a–d catalyzed by [(4)PdCl2] gave soluble copolymers with molecular weights up to 5.1×105.  相似文献   

3.
The asymmetric syntheses of heteroaromatic 3-[(tert-butyldimethylsilyl)oxy]-2-azetidinones 12-16 via chiral ester enolate-imine cyclocondensation chemistry are described. The azetidinones contain heteroaromatic moieties which, in certain cases, contribute to a decrease in enantioselectivity due to possible alternate coordinations in the transition states. The (3R,4S)-3-[(tert-butyldimethylsilyl)oxy]-4-heteroaryl-2-azetidinones were subsequently converted to the heteroaromatic taxanes 31-36 and 43-45. Conformational analyses of the 3'-(2-pyridyl) analogue 31 and 3'-(2-furyl) analogue 43 indicate they have solution conformational preferences virtually identical to paclitaxel and docetaxel. Heteroaromatic N-acyl paclitaxel analogues 47-51 were prepared from N-debenzoylpaclitaxel via Schotten-Baumann acylation. The majority of the 14 analogues displayed good to excellent activity in a microtubule assembly assay in comparison to paclitaxel. The analogues were also tested for cytotoxicity against B16 melanoma cells. 3'-Dephenyl-3'-(2-pyridyl)paclitaxel (31), 3'-dephenyl-3'-(2-furyl)paclitaxel (34), N-BOC-3'-dephenyl-3'-(2-furyl)paclitaxel (43), 3'-dephenyl-3'-(2-furyl)-N-(hexanoyl)paclitaxel (44), and N-debenzoyl-N-(3-furoyl)paclitaxel (51) were found to be more cytotoxic than paclitaxel against this cell line. 3'-Dephenyl-3'-(4-pyridyl)paclitaxel (33) and N-debenzoyl-N-(2-furoyl)paclitaxel (50) displayed cytotoxicity against B16 melanoma cells similar to paclitaxel.  相似文献   

4.
New Ni(II) complexes with bioactive bishydrazones ligands based on (pyridine-2-carboxaldhyde)-3-isatin, (2-acetylpyridine)-3-isatin, and (2-benzoylpyridine)-3-isatin have been synthesized and characterized by elemental analysis, conductivity measurements, IR and UV-Vis spectroscopy, and thermal analysis. The complexes stoichiometry and formation constants have been determined. The results suggest that isatinbishydrazones act as neutral tridentate ligands with ONN sites coordinating to the metal ion via isatin C=O, azomethine CR=N, and pyridine C=N groups to give [Ni(L)H2O]Cl2·2H2O, (L = neutral tridentate isatin hydrazone ligand). Kinetics and thermodynamic parameters of the complexes thermal decomposition have been elucidated from the thermal data using Coats and Redfern method, which has confirmed the first order kinetics.  相似文献   

5.
Six new complex salts trans-[Ru(II)Cl(pdma)2L][PF6]n [pdma = 1,2-phenylenebis(dimethylarsine); L = (E,E,E)-1,6-bis(4-pyridyl)hexa-1,3,5-triene (bph), n= 1, 5; L =N-methyl-4-[(E)-2-(4-pyridyl)ethenyl]pyridinium (Mebpe+), n= 2, 7; L =N-methyl-4-[(E,E)-4-(4-pyridyl)buta-1,3-dienyl]pyridinium (Mebpb+), n= 2, 8; L =N-methyl-4-[(E,E,E)-6-(4-pyridyl)hexa-1,3,5-trienyl]pyridinium (Mebph+), n= 2, 9; L = bis(4-pyridyl)acetylene (bpa), n= 1, 10; L =N-methyl-4-[2-(4-pyridyl)ethynyl]pyridinium (Mebpa+), n= 2, 11] have been prepared. The electronic absorption spectra of 5 and 7-11 display intense, visible metal-to-ligand charge-transfer (MLCT) bands, with lambdamax values in the range 434-492 nm in acetonitrile. Cyclic voltammetric studies reveal reversible Ru(III/II) waves with E(1/2) values in the range 1.06-1.15 V vs. Ag-AgCl, together with irreversible L-based reduction processes. Along with a number of previously reported related compounds (B. J. Coe et al., J. Chem. Soc., Dalton Trans., 1996, 3917; 1997, 591; 2000, 797), salts 5 and 7-11 have been investigated by using Stark (electroabsorption) spectroscopy in butyronitrile glasses at 77 K. These studies have afforded dipole moment changes Deltamu12 for the MLCT transitions which have been used to calculate molecular static first hyperpolarizabilities beta0 according to the two-state equation beta0= 3Deltamu12(mu12)2/(Emax)2 (mu12 = transition dipole moment, Emax = MLCT energy). MLCT absorption and electrochemical data show that a trans-[Ru(II)Cl(pdma)2]+ centre is considerably less electron-rich than a [Ru(II)(NH3)5]2+ unit. Although the beta0 responses of the pdma complexes are only a little smaller than those of their [Ru(II)(NH3)5]2+ analogues, this result is partly attributable to unexpected changes in the relative mu12 values on freezing. Thus, substantial increases in mu12 for the arsine compounds act to partially offset the beta0-decreasing influence of their higher Emax values when compared with the analogous pentaammine species. Single crystal X-ray structures have been obtained for the salts 1(.)2.5MeCN, 4(.)2MeCN, 7 and 11, but only 1(.)2.5MeCN adopts a non-centrosymmetric space group (Fdd2) such as may show bulk NLO effects.  相似文献   

6.
Neutral and cationic mononuclear complexes containing both group 15 and polypyridyl ligands [Ru(kappa3-tptz)(PPh3)Cl2] [1; tptz=2,4,6-tris(2-pyridyl)-1,3,5-triazine], [Ru(kappa3-tptz)(kappa2-dppm)Cl]BF4 [2; dppm=bis(diphenylphosphino)methane], [Ru(kappa3-tptz)(PPh3)(pa)]Cl (3; pa=phenylalanine), [Ru(kappa3-tptz)(PPh3)(dtc)]Cl (4; dtc=diethyldithiocarbamate), [Ru(kappa3-tptz)(PPh3)(SCN)2] (5) and [Ru(kappa3-tptz)(PPh3)(N3)2] (6) have been synthesized. Complex 1 has been used as a metalloligand in the synthesis of homo- and heterodinuclear complexes [Cl2(PPh3)Ru(micro-tptz)Ru(eta6-C6H6)Cl]BF4 (7), [Cl2(PPh3)Ru(mu-tptz)Ru(eta6-C10H14)Cl]PF6 (8), and [Cl2(PPh3)Ru(micro-tptz)Rh(eta5-C5Me5)Cl]BF4 (9). Complexes 7-9 present examples of homo- and heterodinuclear complexes in which a typical organometallic moiety [(eta6-C6H6)RuCl]+, [(eta6-C10H14)RuCl]+, or [(eta5-C5Me5)RhCl]+ is bonded to a ruthenium(II) polypyridine moiety. The complexes have been fully characterized by elemental analyses, fast-atom-bombardment mass spectroscopy, NMR (1H and 31P), and electronic spectral studies. Molecular structures of 1-3, 8, and 9 have been determined by single-crystal X-ray diffraction analyses. Complex 1 functions as a good precursor in the synthesis of other ruthenium(II) complexes and as a metalloligand. All of the complexes under study exhibit inhibitory effects on the Topoisomerase II-DNA activity of filarial parasite Setaria cervi and beta-hematin/hemozoin formation in the presence of Plasmodium yoelii lysate.  相似文献   

7.
The zinc complexes [(L1)(2)Zn(MeOH)(2)](OTf)(2), [(L1)ZnCl(2)], [(L2)ZnCl(2)], [(L2)Zn(OTf)(H(2)O)]OTf and [(Me-bispic)ZnCl(2)] of the ligands N-[(2-pyridyl)methyl]-2,2'-dipyridylamine (L1), N-[bis(2-pyridyl)methyl]-2-pyridylamine (L2) and N-methyl-[bis(2-pyridyl)methyl]amine (Me-bispic) were synthesised and characterised. The first copper(I) complexes of the ligands L1 and L2 were also synthesised and structurally characterised. [(L1)ZnCl(2)] showed unexpected fluxional behaviour in solution and revealed an interesting intramolecular ligand exchange mechanism in the coordination sphere of the zinc ion. Furthermore, strong blue emission was observed under UV-light excitation.  相似文献   

8.
Reaction of N-(2-naphthyl)formimidoyl-3-pyridine with cyclic ketones leads to the formation of 1,2-cycloalkyleno-3-(3-pyridyl)benzo[f]quinolines. Aminoketones, namely, 2-[(3-pyridyl)(2-naphthylamino)methyl]cycloalkanones, are intermediates in this reaction. The absorption-luminescence, PMR, and mass spectra of these newly synthesized compounds have been investigated.Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 10, pp. 1409–1413, October, 1989.  相似文献   

9.
The new ligands dihydrobis[3-(4-pyridyl)pyrazol-1-yl]borate [Bp(4py)]-, hydrotris[3-(4-pyridyl)pyrazol-1-yl]borate [Tp(4py)]-, tetrakis[3-(4-pyridyl)pyrazol-1-yl]borate [Tkp(4py)]-, dihydrobis[3-(3-pyridyl)pyrazol-1-yl]borate [Bp(3py)]-, hydrotris[3-(3-pyridyl)pyrazol-1-yl]borate [Tp(3py)]- and tetrakis[3-(3-pyridyl)pyrazol-1-yl]borate [Tkp(4py)]- are derivatives of the well known bis-, tris- and tetrakis-(pyrazolyl)borate cores, bearing 4-pyridyl or 3-pyridyl substituents attached to the pyrazolyl C3 positions. These pyridyl groups cannot chelate to the metal ions in the poly(pyrazolyl) cavity but are externally directed. Structural studies on a range of metal complexes show how, in many cases, coordination of these pendant pyridyl groups to the M(pyrazolyl)n core of an adjacent metal complex fragment results in formation of coordination oligomers or polymeric networks. [Tl(Bp(3py))], [Tl(Bp(4py))] and [Tl(Tp(4py))] form one-dimensional polymeric chains via coordination of one of their pendant pyridyl units to the Tl(I) centre of an adjacent complex fragment; in contrast, in [Tl(Tp(3py))] coordination of all three pendant pyridyl units to separate Tl(I) neighbours results in formation of a two-dimensional polymeric sheet. In [Tl(Tkp(3py))] and [Tl(Tkp(4py))] the Tl(I) is coordinated by two or three of the four pyrazolyl arms, respectively; bridging interactions of pendant 4-pyridyl groups with adjacent Tl(I) centres result in a two-dimensional sheet forming in each case. In Ag(Tkp(4py)) each Ag(I) ion is coordinated by two pyrazolyl rings, and two bridging pyridyl ligands from other complex units, resulting in a one-dimensional chain consisting of pairs of cross-linked zigzag chains. In contrast to these polymeric coordination networks, the structures of [Cu(Tp(4py))] and [(Tp(3py))Cd(CH3CO2)] are dimers, with a pendant pyridyl residue from the first metal centre attaching to a vacant coordination site on the second, and vice versa; these dimers are stabilised by pi-stacking interactions between sections of the two ligands. [Ni(Tp(3py))2] is monomeric, with an octahedral coordination geometry arising from two tris(pyrazolyl)borate chelates; the array of pendant 3-pyridyl groups is involved only in intramolecular hydrogen-bonding. [(Tp(4py))Re(CO)3] is also monomeric, with a facial arrangement of three pyrazolyl ligands and three carbonyls, with the pendant 4-pyridyl groups not further coordinated. [(Tp(2py))Re(CO)3], based on the related ligand hydrotris[3-(2-pyridyl)pyrazol-1-yl]borate, has a similar fac-(CO)3(pyrazolyl)3 coordination geometry.  相似文献   

10.
Shin DM  Lee IS  Lee YA  Chung YK 《Inorganic chemistry》2003,42(9):2977-2982
The self-assembly of metallosupramolecules from reactions of flexible 2-pyridyl ligands and silver salts is described. When 1,3-bis(2-pyridyl)propane (L1), tris[(2-pyridyl)methyl]methane (L2), and 1,3-bis(2-pyridyl)-2-tolylpropane (L3) are used in combination with silver ions, novel discrete metallocyclic complexes are formed in crystals. Moreover, the self-assembly of 1,3-bis(2-pyridyl)-2-phenylpropane (L4) with silver nitrate yields a coordination polymer. The examination of its solution shows that this coordination polymer is formed via the solution-based discrete metallocyclic species.  相似文献   

11.
Yang W  Chen L  Wang S 《Inorganic chemistry》2001,40(3):507-515
Two novel blue luminescent bridging ligands N,N,N',N'-tetra(2-pyridyl)-1,4-phenylenediamine (tppd) and N,N,N',N'-tetra(2-pyridyl)-1,1-biphenyl-4,4'-diamine (tpbpd) have been synthesized. Several novel lanthanide complexes containing 2,2',2"-tripyridylamine (2,2',2"-tpa), 2,2',3"-tpa, tppd, or tpbpd ligands have been synthesized and characterized structurally, which include Pr(hfa)3(2,2',2"-tpa), I, Ln(tmhd)3(2,2',3"-tpa), 2 (Ln = Dy, 2a; Eu, 2b; Tb, 2c; Sm, 2d), [Eu(tmhd)3][Pr(hfa)3](2,2',3"-tpa), 3, [Pr(hfa)3]2(tppd), 4, and [Ln(hfa)3]2(tpbpd), 5, where Ln = Pr (5a), Eu (5b), tmhd = 2,2,6,6-tetramethyl-3,5-heptanedionato, and hfa = hexafluoroacetylacetonate. The Dy(III), Eu(III), and Tb(III) complexes display a bright photoluminescence, which can be achieved by either a direct excitation process or an indirect excitation process. Compounds 2a-2d can be sublimed readily.  相似文献   

12.
de La Rosa FJ  Ariza JL  Pino F 《Talanta》1983,30(8):555-564
1,3-Bis[(2-pyridyl)methyleneamino]thiourea (PMAT) and 1,3-bis[(2-pyridyl)methyleneamino]-guanidine (PMAG) have been prepared. They have been examined and characterized by infrared and ultraviolet spectroscopy. A spectrophotometric method has been used for determination of the protonation constants of the reagents. Finally, a spectrophotometric survey has been made of the reactions of various cations with PMAT and PMAG.  相似文献   

13.
The construction of a new set of [(eta5-C5Me5)MoS3Cu3]-based supramolecular compounds with different one-dimensional (1D) arrays from two preformed clusters [PPh4][(eta5-C5Me5)MoS3(CuX)3] (X = Br (1a), NCS (1b)) with 1,2-bis(4-pyridyl)ethane (bpe) and 1,3-bis(4-pyridyl)propane (bpp) is presented. Reactions of 1a with bpe in different molar ratios afforded ([((eta5-C5Me5)MoS3Cu3) 2(mu-bpe)3.5Br4].MeCN) n (2), ([((eta5-C5Me5)MoS3Cu3)2(mu-bpe)3Br4].Sol)n (3a: Sol = DMSO.3MeCN; 3b: Sol = 2aniline.3MeCN), ([((eta5-C 5Me5)MoS3Cu3)2(mu-bpe)3(bpe)Br4].0.35DMF)n (4), and ([((eta5-C5Me5)MoS3Cu3)2(mu-bpe)2(mu-Br)(mu3-Br)Br2].DMF.MeCN)n (5). On the other hand, treatment of 1a or 1b with bpp produced [(eta5-C5Me5)MoS3Cu3(mu-bpp)(mu-Br)Br]n (6) and ([((eta5-C5Me5)MoS3Cu3)2(mu-bpp)3(mu-NCS)2(NCS)](NCS))n (7). Compounds 2-7 have been characterized by elemental analysis, UV-vis spectroscopy, IR spectroscopy, 1H NMR, and X-ray analysis. In 2, each [(eta5-C5Me5)MoS3Cu3] core serves as an angular two-connecting node to link other equivalent cores by single and double bpe bridges to form a 1D "Great Wall"-like chain. In 3a and 3b, the [(eta5-C5Me5)MoS3Cu3] cores are linked alternatively by single and double bpe bridges to give a 1D zigzag chain. In 4, six cluster cores (two as a two-connecting node and four as a three-connecting node) are connected by four single bpe and two double bpe bridges to form a cyclohexane-shaped repeating unit, which is further fused with other units to generate a 1D double-stranded chain. Compound 5 has a simple 1D zigzag chain consisting of the cluster cores linked by single bpe bridges. In 6, the cluster cores are linked by single bpp bridges to give a 1D helical chain, which further holds two symmetry-related chains through C-H...Br hydrogen-bonding interactions, thereby forming a 1D H-bonded triple-stranded chain. Compound 7 has a rare 1D quadruple chain, in which the [(eta5-C5Me5)MoS3Cu3] cores work as planar four- and five-connecting nodes to interconnect other equivalent cores through single bpp bridges and single and double thiocyanate bridges. In addition, the third-order nonlinear optical properties of 1a, 2, 3a, and 4-7 in aniline were also investigated by using the Z-scan technique with a 4.5 ns pulse laser at 532 nm.  相似文献   

14.
Zinc complexes of three new amide-appended ligands have been prepared and isolated. These complexes, [(dpppa)Zn](ClO4)2 (4(ClO4)2; dpppa = N-((N,N-diethylamino)ethyl)-N-((6-pivaloylamido-2-pyridyl)methyl)-N-((2-pyridyl)methyl)amine), [(bdppa)Zn](ClO4)2 (6(ClO4)2; bdppa = N,N-bis((N,N-diethylamino)ethyl)-N-((6-pivaloylamido-2-pyridyl)methyl)amine), and [(epppa)Zn](ClO4)2 (8(ClO4)2; epppa = N-((2-ethylthio)ethyl)-N-((6-pivaloylamido-2-pyridyl)methyl)-N-((2-pyridyl)methyl)amine), have been characterized by X-ray crystallography (4(ClO4)2 and 8(ClO4)2), 1H and 13C NMR, IR, and elemental analysis. Treatment of 4(ClO4)2 or 8(ClO4)2 with 1 equiv of Me4NOH.5H2O in methanol-acetonitrile (5:3) results in amide methanolysis, as determined by the recovery of primary amine-appended forms of the chelate ligand following removal of the zinc ion. These reactions proceed via the initial formation of a deprotonated amide intermediate ([(dpppa-)Zn]ClO4 (5) and [(epppa-)Zn]ClO4 (9)) which in each case has been isolated and characterized (1H and 13C NMR, IR, elemental analysis). Treatment of 6(ClO4)2 with Me4NOH.5H2O in methanol-acetonitrile results in the formation of a deprotonated amide complex, [(bdppa-)Zn]ClO4 (7), which was isolated and characterized. This complex does not undergo amide methanolysis after prolonged heating in a methanol-acetonitrile mixture. Kinetic studies and construction of Eyring plots for the amide methanolysis reactions of 4(ClO4)2 and 8(ClO4)2 yielded thermodynamic parameters that provide a rationale for the relative rates of the amide methanolysis reactions. Overall, we propose that the mechanistic pathway for these amide methanolysis reactions involves reaction of the deprotonated amide complex with methanol to produce a zinc methoxide species, the reactivity of which depends, at least in part, on the steric hindrance imparted by the supporting chelate ligand. Amide methanolysis involving a zinc complex supported by a N2S2 donor chelate ligand (3(ClO4)2) is more complicated, as in addition to the formation of a deprotonated amide intermediate free chelate ligand is present in the reaction mixture.  相似文献   

15.
Synthesis of 3-(2-Carboxy-4-pyridyl)-and 3-(6-Carboxy-3-pyridyl)-DL-alanine As starting materials for potential photochemical approaches to betalaines C(R = COOH) and to muscaflavine F(R = COOH), β-(2-carboxy-4-pyridyl)- and β-(6(carboxy-3-pyridyl))-DL-alanine ( A and D with R = COOH or 4 and 11 ), respectively, were prepared (Scheme 1). The synthesis of 4 (= A, R = COOH) started with the 2-[(4-pyridyl)methyl]malonate 1 and proceeded via the N-oxide 2 , cyanation and hydrolysis (Scheme 2). Amino acid 11 was obtained from (3-pyridyl)methyl-bromide ( 6 ) via the malonate 7 by an analogous sequence of reactions (Scheme 3).  相似文献   

16.
A systematic study of the novel charge-transfer [(f)14-(pi)0-(f)14 --> (f)13-(pi)2-(f)13] electronic state found in 2:1 metal-to-ligand adducts of the type [(Cp)2Yb](BL)[Yb(Cp)2] [BL = tetra(2-pyridyl)pyrazine (tppz) (1), 6',6' '-bis(2-pyridyl)-2,2':4',4':2',2'-quaterpyridine (qtp) (2), 1,4-di(terpyridyl)-benzene (dtb) (3), Cp = (C5Me5)] has been conducted with the aim of determining the effects of increased Yb-Yb separation on the magnetic and electronic properties of these materials. The neutral [(f)13-(pi)2-(f)13], cationic [(f)13-(pi)1-(f)13] and dicationic [(f)13-(pi)0-(f)13] states of these complexes were studied by cyclic voltammetry, UV-vis-NIR electronic absorption spectroscopy, NMR, X-ray crystallography, and magnetic susceptibility measurements. The spectroscopic and magnetic data for the neutral bimetallic complexes is consistent with an [(f)13(pi)2(f)13] ground-state electronic configuration in which each ytterbocene fragment donates one electron to give a singlet dianionic bridging ligand with two paramagnetic Yb(III) centers. The voltammetric data demonstrate that the electronic interaction in the neutral molecular wires 1-3, as manifested in the separation between successive metal reduction waves, is large compared to analogous transition metal systems. Electronic spectra for the neutral and monocationic bimetallic species are dominated by pi-pi and pi-pi transitions, masking the f-f bands that are expected to best reflect the electronic metal-metal interactions. However, these metal-localized transitions are observed when the electrons are removed from the bridging ligand via chemical oxidation to yield the dicationic species, and they suggest very little electronic interaction between metal centers in the absence of pi electrons on the bridging ligands. Analysis of the magnetic data reveals that the qtp complex displays antiferromagnetic coupling of the type Yb(alpha)(alphabeta)Yb(beta) at approximately 13 K.  相似文献   

17.
The well-known tetradentate ligand 1,2-bis(pyridine-2-carboxamido)benzenate(2-), (bpb)2-, and its 4,5-dichloro analogue, (bpc)2-, are shown to be "noninnocent" ligands in the sense that in coordination compounds they can exist in their radical one- and diamagnetic two-electron-oxidized forms (bpbox1)- and (bpbox2)0 (and (bpcox1)- and (bpcox2)0), respectively. Photolysis of high-spin [(n-Bu)4N][FeIII(bpb)(N3)2] and its (bpc)2- analogue in acetone solution at room temperature generates the diamagnetic dinuclear complex [(n-Bu)4N][FeIV2(mu-N)(bpb)2(N3)2] and its (bpc)2- analogue; the corresponding cyano complex [(n-Bu)4N][FeIV2(mu-N)(bpb)2(CN)2] has been prepared via N3- substitution by CN-. Photolysis in frozen acetonitrile solution produces a low-spin ferric species (S = 1/2) which presumably is [FeIII(bpbox2)(N)(N3)]-, as has been established by EPR and M?ssbauer spectroscopy. The mononuclear complexes [(n-Bu)4N][FeIII(bpb)(CN2)] (low spin), [Et4N][CoIII(bpb)(CN)2] and Na[CoIII(bpc)-(CN)2].3CH3OH can be electrochemically or chemically one-electron-oxidized to give [FeIII(bpbox1)(CN)2]0 (S = 0), [CoIII(bpbox1)(CN)2]0 (S = 1/2), and [CoIII(bpcox1)(CN)2]0 (S = 1/2). All complexes have been characterized by UV-vis, EPR, and M?ssbauer spectroscopy, and their electro- and magnetochemistries have been studied. The crystal structures of [(n-Bu)4N][FeIII(bpb)(N3)2].1/2C6H6CH3, Na[FeIII(bpb)(CN)2], Na[CoIII(bpc)(CN)2].3CH3OH, [(n-Bu)4N][FeIV2(mu-N)(bpb)2(CN)2], and [(n-Bu)4N][FeIV2(mu-N)(bpb)(N3)2] have been determined by single-crystal X-ray diffraction.  相似文献   

18.
Many 8-[(2-benzimidazolyl)sulfinyl]-5,6,7,8-tetrahydroquinolines were synthesized and examined for their (H+ + K+) adenosine triphosphatase ATPase-inhibitory and antisecretory activities. These sulfinyl compounds could be considered to be rigid analogues of the 2-[(2-pyridyl)methylsulfinyl]benzimidazole class of antisecretory agents. All the compounds tested were potent inhibitors of (H+ + K+)ATPase. Most of the compounds also inhibited histamine-induced gastric acid secretion in rats. Among them, 8-[(5-fluoro-2-benzimidazolyl)sulfinyl]-3-methyl-5,6,7,8-tetrahydroqu inoline (XIVm) was found to have the most potent activity. The structure-activity relationships are discussed.  相似文献   

19.
A family of coordination polymers formed by the reaction of copper(I) iodide with a range of angular bidentate or tridentate N-donor ligands is reported. The framework polymers [CuI(dpt)](infinity) 1 [dpt = 2,4-bis(4-pyridyl)-1,3,5-triazine], [CuI(dpb)](infinity) 2 [dpb = 1,4-bis-(4-pyridyl)-benzene], [(CuI)3(dpypy)2](infinity) 3, [CuI(dpypy)](infinity) 4 [dpypy = 3,5-bis(4-pyridyl)-pyridine], and [Cu3I3(pypm)](infinity) 5 [pypm = 5-(4-pyridyl)pyrimidine] have been prepared and structurally characterized. It was found that the angular nature of the dpypy and dpt ligands favors the formation of discrete (CuI)2 dimeric subunits as observed in [CuI(dpt).MeCN](infinity) 1 and [(CuI)3(dpypy)2](infinity) 3. In contrast, reaction with the linear ligand dpb affords [CuI(dpb)](infinity) 2 which incorporates a one-dimensional (CuI)(infinity) chain structure. Moreover, the additional donor available on the central ring of the dpypy ligand generates a novel two-dimensional bilayer structure in 3, in contrast to the one-dimensional ribbon structure observed in the case of 1. Interestingly, the bilayer structure of 3 additionally exhibits 2-fold interpenetration. The reaction of CuI with dpypy produces not only 3 but a further product [CuI(dpypy)](infinity) 4 that has been characterized as a one-dimensional chain constructed from trigonal-planar Cu(I) centers bridged by bidentate dpypy ligands. Compound 5, [Cu3I3(pypm)](infinity), exhibits a highly unusual three-dimensional structure in which the pypm ligand bridges two-dimensional brick-wall (CuI)(infinity) sheets.  相似文献   

20.
Treatment of 4-[(3-hydroxy-2-pyridyl)amino]-2-phenyl-5-pyrimidinecarboxylic acid (X) with acetic anhydride under refluxing conditions afforded 10-hydroxy-2-phenyl-5H-pyrido[1,2-a]-pyrimido[4,5-d]pyrimidin-5-one acetate (IX). The intermediate X was prepared from 4-chloro-2-phenyl-5-pyrimidinecarboxylic acid ethyl ester (V). The reaction of V with the sodium salt of 2-amino-3-hydroxypyridine at room temperature gave 4-(2-amino-3-pyridyloxy)-2-phenyl-5-pyrimidinecarboxylic acid ethyl ester (VI). Treatment of VI with a hot aqueous sodium hydroxide solution and subsequent acidification gave X. Involvement of 4-[(3-hydroxy-2-pyridyl)amino]-2-phenyl-5-pyrimidinecaroboxylic acid ethyl ester (VIII) (Smiles rearrangement product) as an intermediate in the above alkaline hydrolysis reaction of VI to X was demonstrated by the isolation of VIII and its subsequent conversion into X under alkaline hydrolysis conditions. Acetylation of VIII with acetic anhydride in pyridine solution gave 4-[(3-hydroxy-2-pyridyl)amino]-2-phenyl-5-pyrimidinecarboxylic acid ethyl ester acetate (XI), which afforded IX on fusion at 220°. This alternative synthesis of IX from XI supported the structural assignment of IX. Fusion of VI gave 10-hydroxy-2-phenyl-5H-pyrido[1,2-a]pyrimido]4,5-d]pyrimidin-5-one (VII). The latter was also obtained when VIII was fused at 210°. Acetylation of VII with acetic anhydride afforded IX.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号