首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 527 毫秒
1.
The state of palladium in nanoparticles formed in the system PdCl2 — elemental phosphorus in an inert atmosphere was identified using X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS). Palladium phosphides of different composition and Pd(0) clusters are shown to form as a result of a redox process. According to the XPS data, the structures of nanoparticles are of the core-shell type. The interaction of PdCl2 with P4 is followed not only by the hydrolysis of the solvent (DMF) accelerated by hydrochloric acid, but also by the decomposition catalyzed by palladium cluster of organic compounds. The formed graphite and phosphoric acids stabilize the nanoparticles.  相似文献   

2.
The applicability of elemental phosphorus as a modifier of palladium catalysts for hydrogenation was demonstrated, and the conditions for the synthesis of nanoparticles that are highly efficient in hydrogenation catalysis were optimized. The modifying effect of elemental phosphorus depends on the P/Pd ratio; it is associated with changes in the catalyst dispersity and the nature of the formed nanoparticles containing various palladium phosphides (PdP2, Pd5P2, and Pd6P) and Pd(0) clusters. The main stages of the formation of palladium catalysts for hydrogenation were determined, and a model of an active catalyst, in which the Pd6P phosphide is the core of a nanoparticle and Pd(0) clusters form a shell, was proposed.  相似文献   

3.
Nano-titania doped with noble metals (Au/TiO2, Ag/TiO2, Pd/TiO2) has been synthesized by mild hydrolysis of the mixture of metal salts or complexes and titanium isopropoxide ((iPr-O)4Ti). After thermal decomposition of the obtained precursors, nanomaterials were formed. Morphological characterization of the nanomaterials was provided by scanning electron microscopy (SEM) and stereological analysis, determining the BET specific surface area, and BJH nanoporosity (pore volume, pore size). It has been found that the structure of nanomaterials (size of nanoparticles and agglomerates) depended strongly on the method of the (iPr-O)4Ti hydrolysis. A minor dependence on the kind of solvents and precursors of noble metals was observed. The presence of doping metal nanoparticles was confirmed by transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX). Nanomaterial phases were identified by X-ray diffraction (XRD). According to the XRD patterns, Ag/TiO2 and Pd/TiO2 products with doping metals in their oxidized form contain Ag-Ti and Pd-Ti phases. Peaks of the metal oxides Ag2O and PdO are absent in the XRD patterns. The average size of TiO2 nanoparticles is situated in the region of 20–60 nm, whereas metals are present as about 10–15 nm sized particles and fine nanoparticles.  相似文献   

4.
In this study, we present a simple process to obtain highly dispersed palladium nanoparticles on Vulcan XC-72R carbon support without any protective agent. To obtain high metal loading Pd/C catalyst without any surfactant, we modified the polyol process by employing NH3 species as a mediation to control the reaction pathway to avoid the precipitation of Pd(OH)2, and hence the agglomeration of Pd nanoparticles. The obtained Pd/C sample was characterized by X-ray diffraction (XRD) and transmission electron microscope (TEM) techniques. The results show that highly dispersed Pd/C catalyst with an average diameter of 3.0 nm could be obtained in this novel process. The activity of formic acid oxidation on this Pd/C catalyst was examined via cyclic voltammetry technique and it is found that the catalytic activity is greatly enhanced due to the reduced particle size and the improved dispersion of palladium nanoparticles on the carbon surface.  相似文献   

5.
The Pd, AuPd, and ZrO2 nanoparticle–decorated functionalised multiwalled carbon nanotubes (f‐MWCNTs) were reported as efficient catalysts of formic acid (FA) electro‐oxidation. Different preparation conditions influence their chemical and structural properties analysed by X‐ray photoelectron spectroscopy aided with the quantitative analysis of surfaces by electron spectroscopy. Different reduction procedures such as NaBH4, a polyol microwave‐assisted method (PMWA), and a high pressure microwave reactor (HPMWR) were applied for decorating ZrO2/f‐MWCNTs with Pd and AuPd nanoparticles. The ZrO2 nanoparticles are attached through oxygen groups to the surface of f‐MWCNTs. In NaBH4 and HPMWR procedures, Pd nanoparticles precipitate predominantly on ZrO2 of nearly nominal stoichiometry, whereas in PMWA procedure, Pd and AuPd nanoparticles precipitate predominantly on the surface of f‐MWCNTs, bridging with oxygen groups and ZrOx (x < 2) and leading to Pd‐O‐Zr phase formation. Strong reducing procedures (NaBH4 and FA) led to smaller Pd nanoparticle size, Pd oxide content, and PdOx overlayer thickness in contrary to weak reduction procedures (HPMWR and PMWA). The highest content of Pd‐O‐Zr phase appeared for Pd predominant precipitation on ZrO2 nanoparticles (HPMWR) in contrary to Pd and AuPd predominant precipitation on surface of f‐MWCNTs (NaBH4 ~ FA > PMWA). Larger content of Pd‐O‐Zr phase in AuPd‐decorated ZrO2/f‐MWCNTs in contrary to Pd‐decorated sample (PMWA) could be justified by different electronic properties of nanoparticles. The FA treatment of Pd and AuPd‐ZrO2/f‐MWCNTs samples provided decreasing Pd oxide content, overlayer thickness, nanoparticle size, increasing nanoparticle surface coverage and density, amount of Pd‐O‐Zr, what results from reduction of oxygen groups bridging with Pd and ZrOx nanoparticles, also through Pd‐O‐Zr phase.  相似文献   

6.
The nature and catalytic properties of a hydrogenation catalyst based on Pd(acac)2 and PH3 are considered. As demonstrated by a variety of physicochemical methods (IR and UV spectroscopy, 31P and 1H NMR, electron microscopy, and X-ray powder diffraction), nanoparticles consisting of various palladium phosphides (Pd6P, Pd4.8P, and Pd5P2) and Pd(0) clusters form under the action of dihydrogen during catalyst preparation. The promoting effect of phosphine at low PH3: Pd(acac)2 ratios is mainly due to the ability of phosphine to increase the extent of dispersion of the catalyst.  相似文献   

7.
The precursor nature effect on the state of the Pd–P surface layer in palladium catalysts and on their properties in the liquid-phase hydrogenation of chloronitrobenzenes under mild conditions has been investigated. A general feature of the Pd–P-containing nanoparticles obtained from different precursors and white phosphorus at P/Pd = 0.3 (PdCl2 precursor) and 0.7 (Pd(acac)2 precursor) is that their surface contains palladium in phosphide form (BE(Pd3d 5/2) = 336.2 eV and BE(Р2р) = 128.9 eV) and Pd(0) clusters (BE(Pd3d5/2) = 335.7 eV). Factors having an effect on the chemoselectivity of the palladium catalysts in chloronitrobenzenes hydrogenation are considered, including the formation of small palladium clusters responsible for hydrogenation under mild conditions.  相似文献   

8.
Phase composition and surface layer state of the Pd–P hydrogenation catalyst formed at various P/Pd ratios from Pd(acac)2 and white phosphorus in a hydrogen atmosphere were determined. Palladium on the catalyst surface is mainly in two chemical states: as Pd(0) clusters and as palladium phosphides. As the P/Pd ratio increases, the fraction and size of palladium clusters decrease, and also the phase composition of formed palladium phosphides changes: Pd3P0.8 → Pd5P2 → PdP2. The causes of the modifying action of phosphorus on the properties of palladium catalysts for hydrogenation of unsaturated compounds were considered.  相似文献   

9.
以花生壳为原料,经KOH活化制备花生壳基多孔碳(HC)。氮气吸附-脱附研究表明,所获得的多孔碳的总表面积高达1 645 m2·g-1。采用浸渍还原法制备了以HC为载体的Pd-Co/HC催化剂。X射线衍射(XRD)和X射线光电子能谱(XPS)分析表明,催化剂中的Co主要以Co和CoO的形式存在,Co进入Pd的晶格并形成Pd-Co合金。Pd-Co/HC0.5-700的透射电子显微镜(TEM)结果显示,Pd-Co纳米颗粒具有较小粒径(约4 nm)且成功地分散在HC上。Pd-Co/HC0.5-700在碱性介质中电催化氧化甲醇时表现出优秀的电催化活性、稳定性和CO耐受性,这种显著的高性能可以归因于生物质载体大的表面积和Co的成功掺杂。  相似文献   

10.
以花生壳为原料,经KOH活化制备花生壳基多孔碳(HC)。氮气吸附-脱附研究表明,所获得的多孔碳的总表面积高达1 645 m2·g-1。采用浸渍还原法制备了以HC为载体的Pd-Co/HC催化剂。X射线衍射(XRD)和X射线光电子能谱(XPS)分析表明,催化剂中的Co主要以Co和Co O的形式存在,Co进入Pd的晶格并形成Pd-Co合金。Pd-Co/HC0.5-700的透射电子显微镜(TEM)结果显示,Pd-Co纳米颗粒具有较小粒径(约4 nm)且成功地分散在HC上。Pd-Co/HC0.5-700在碱性介质中电催化氧化甲醇时表现出优秀的电催化活性、稳定性和CO耐受性,这种显著的高性能可以归因于生物质载体大的表面积和Co的成功掺杂。  相似文献   

11.
Reactions of Pd(Acac)2 and Pd(Acac)2PPh3 complexes with triethylaluminium in an inert atmosphere are studied by the NMR and IR, electronic microscopy, and X-ray powder diffraction methods. The final products of conversion of the initial Pd(II) complexes are the Pd(0) nanoparticles with the predominant diameter 2–4 nm. The main factors determining the size of Pd(0) particles and the nature of the ligand shell are considered.  相似文献   

12.

Carbon-supported oxide-rich Pd–W bimetallic nanoparticles were prepared by chemical reduction methods. The existence of oxides in the electrocatalysts is confirmed by X-ray photoelectron spectrum (XPS) and high resolution transmission electron microscopy. XPS analysis indicates that the oxygen atoms account for about 50% of all the atoms in Pd–W bimetallic nanoparticles. Compared to Pd/C catalyst, the carbon-supported oxide-rich Pd–W bimetallic nanoparticles exhibit a better catalytic activity for the anode oxidation of ethanol in alkaline media. The onset potential of the as prepared oxide-rich Pd0.8W0.2/C catalyst (Pd: W = 8: 2, metal atom ratio) for ethanol oxidation is negative shifted about 90 mV comparing to Pd/C catalyst. The oxide-rich Pd–W/C electrocatalysts provide a new model of noble-metal/promoter system as an extreme case of making the promoter (WO3) closely adjacent to the noble metal (Pd) by fabricating nanoparticles containing both atom-clusters of oxides and the noble metal atoms.

  相似文献   

13.
Nanocomposites based on PtPd nanoparticles with chemical ordering like disordered solid solution on surface of multilayer graphene have been prepared through thermal shock of mechanically obtained mixture of double complex salt [Pd(NH3)4][PtCl6] and different carbon materials–exfoliated graphite, graphite oxide and graphite fluoride. An effect of original carbon precursors on formation of PtPd bimetallic nanoparticles was studied using X-ray absorption spectroscopy (XAFS), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). It was shown that the distribution of bimetallic nanoparticles over the multilayer graphene surface as well as the particles size distribution is controlled by the graphene precursors. For all nanocomposites, the surface of the nanoparticles was found to be Pd-enriched. In case when the thermal exfoliated graphite and graphite oxide were used as the graphene precursors a thin graphitized layer covered the nanoparticles surface. Such a graphitized layer was not observed in the nanocomposite, which used the fluorinated graphite as the precursor.  相似文献   

14.
The selectivity in the hydrogenation of acrolein over Fe3O4‐supported Pd nanoparticles has been investigated as a function of nanoparticle size in the 220–270 K temperature range. While Pd(111) shows nearly 100 % selectivity towards the desired hydrogenation of the C=O bond to produce propenol, Pd nanoparticles were found to be much less selective towards this product. In situ detection of surface species by using IR‐reflection absorption spectroscopy shows that the selectivity towards propenol critically depends on the formation of an oxopropyl spectator species. While an overlayer of oxopropyl species is effectively formed on Pd(111) turning the surface highly selective for propenol formation, this process is strongly hindered on Pd nanoparticles by acrolein decomposition resulting in CO formation. We show that the extent of acrolein decomposition can be tuned by varying the particle size and the reaction temperature. As a result, significant production of propenol is observed over 12 nm Pd nanoparticles at 250 K, while smaller (4 and 7 nm) nanoparticles did not produce propenol at any of the temperatures investigated. The possible origin of particle‐size dependence of propenol formation is discussed. This work demonstrates that the selectivity in the hydrogenation of acrolein is controlled by the relative rates of acrolein partial hydrogenation to oxopropyl surface species and of acrolein decomposition, which has significant implications for rational catalyst design.  相似文献   

15.
以含巯基官能团有机硅烷修饰的介孔材料MCM-41和SBA-15为载体, 采用浸渍-氢气还原法制备了高分散和高活性的负载型Pd催化剂. X射线衍射、N2吸附-脱附和透射电子显微镜表征结果显示, 所制Pd催化剂Pd-SH-MCM-41和Pd-SH-SBA-15具有很好的长程有序结构、分布均匀的孔径、高比表面积及高度分散的Pd颗粒. 苯酚加氢反应结果表明, 以Pd-SH-MCM-41和Pd-SH-SBA-15为催化剂时, 在80℃, 1.0MPa反应1h, 苯酚转化率达99%以上, 环己酮选择性为98%. 它们的催化活性为商业Pd/C催化剂的5倍, Pd/MCM-41和Pd/SBA-15催化剂的3倍. 这可归因于介孔材料表面修饰的巯基官能团对Pd的锚定作用, 避免了Pd颗粒的团聚, 使其高度分散在介孔材料上.  相似文献   

16.
Pd particles loading on TiO2-embedded multi-walled carbon nanotubes (MWCNTs), MWCNTs, and TiO2 particles were prepared via an impregnation method with palladium(II) chlorate solution followed by heat treatment at high temperature. To characterize the catalysts, BET surface area, scanning electron microscopy, transmission electron microscopy, X-ray diffraction, energy dispersive X-ray, Fourier transform infrared spectroscopy and ultraviolet-visible spectroscopy were employed. The prepared catalysts were tested in degradation of methyl orange under visible light. Pd/TiO2-MWCNTs catalyst demonstrates the highest photocatalytic activity, and the phase transformation from PdO to Pd0 phase takes place at heat treatment of embedded TiO2. The nanoparticles size of TiO2 can be decreased by introduction of MWCNTs species. Combining structural characterization with kinetic study results we could conclude that the superior catalytic performance could arise due to the Pd/TiO2-MWCNTs catalyst’s structure.  相似文献   

17.
A novel light‐active magnetic Pd complex as a photocatalyst was prepared through bonding organometallics to mesoporous silica channels formed on the surface of silica‐coated iron oxide nanoparticles. The nanocomposite (denoted as Fe3O4@SiO2@m‐SiO2@PDA‐Pd(0); PDA = 1,10‐phenanthroline‐2,9‐dicarbaldehyde) is more efficient and has higher photocatalytic capability in the degradation of 2,4‐dichlorophenol under visible light irradiation compared with virgin Pd complex (PDA‐Pd). This noteworthy photodegradation activity can be due to the high dispersion of Pd nanoparticles. High yield, low reaction time and non‐toxicity of the catalyst are the main merits of this protocol. Also magnetic separation is an environmentally friendly alternative method for the separation and recovery of the catalyst, since it minimizes the use of solvents and auxiliary materials, reduces operation time and minimizes catalyst loss by preventing mass loss and oxidation. The produced Pd catalyst was characterised using various techniques. Furthermore, transmission electron microscopy characterization was used for determining the structural properties of the Pd nanocatalyst.  相似文献   

18.
The structure and catalytic characteristics of a series of Pd–Cu/α-Al2O3 catalysts with Pd: Cu ratio varied from Pd1–Cu0.5 to Pd1–Cu4 were studied. The use of α-Al2O3 with a small surface area (Ssp = 8 m2/g) as a support made it possible to minimize the effect of diffusion on the catalytic characteristics and to study the structure of Pd–Cu nanoparticles by X-ray diffraction (XRD) analysis. The XRD analysis and transmission electron microscopy (TEM) data indicated the formation of uniform bimetallic Pd–Cu nanoparticles (d = 20–60 nm), whose composition corresponded to a ratio between the metals in the catalyst, and also the absence of monometallic Pd0 and Cu0 nanoparticles. The study of catalytic properties in the liquid-phase hydrogenation of diphenylacetylene (DPA) showed that the activity of the catalysts rapidly decreased with the Cu content increase; however, in this case, the yield of a desired alkene compound significantly increased. The selectivity of alkene formation on the catalysts with the ratios Pd: Cu = 1: 3 and 1: 4 was superior to the commercial Lindlar catalyst.  相似文献   

19.
Pd and bimetallic PdRu nanoparticles supported on Vulcan XC-72 carbon prepared by the microwave-assisted polyol process are examined as electrocatalysts for the electrooxidation of formic acid. The catalysts are characterized by transmission electron microscopy and X-ray diffraction. The Pd and PdRu nanoparticles with sizes of <10 nm display the characteristic diffraction peaks of a Pd face-centered cubic (fcc) crystal structure. It is found that the addition of Ru to Pd/C can decrease the lattice parameter of Pd (fcc) crystal. The electrocatalytic activities of the catalysts are evaluated in sulfuric acid solution containing 1 M formic acid using linear sweeping voltammetry and chronoamperometry. The results show that Pd5Ru1/C displays the best electrocatalytic performance among all catalysts for formic acid electrooxidation.  相似文献   

20.
A strategy has been developed for the synthesis, characterization and catalysis of magnetic Fe3O4/P(GMA‐EGDMA)‐NH2/HPG‐COOH‐Pd core‐shell structure supported catalyst. The P(GMA‐EGDMA) polymer layer was coated on the surface of hollow magnetic Fe3O4 microspheres through the effect of KH570. The core‐shell magnetic Fe3O4/P(GMA‐EGDMA) modified by ‐NH2 could be grafted with HPG. Then, the hyperbranched glycidyl (HPG) with terminal ‐OH were modified by ‐COOH and adsorbed Pd nanoparticles. The hyperbranched polymer layer not only protected the Fe3O4 magnetic core from acid–base substrate corrosion, but also provided a number of functional groups as binding sites for Pd nanoparticles. The prepared catalyst was characterized by UV–vis, TEM, SEM, FTIR, TGA, ICP‐OES, BET, XRD, DLS and VSM. The catalytic tests showed that the magnetic Fe3O4/P(GMA‐EGDMA)‐NH2/HPG‐COOH‐Pd catalyst had excellent catalytic performance and retained 86% catalytic efficiency after 8 consecutive cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号