首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A nonlinear nonstationary theory of surface-wave oscillators with 1D and 2D periodic structures is constructed in terms of a quasi-optical approach. The radiation field is represented as a superposition of quasi-optical wave beams coupled on a corrugated surface and forming a self-consistent structure. Synchronous interaction with rectilinear relativistic ribbon and cylindrical electron beams is observed when the surface wave slows down. The results obtained in terms of the average approach are compared with those obtained by direct numerical particle-in-cell simulation. The feasibility of creating small-size millimeterwave gigawatt power supplies based on 2D planar and cylindrical surface-wave oscillators is demonstrated.  相似文献   

2.
We consider a planar system of narrow-band Bragg reflectors in which the transformation of an incident wave into a counterpropagating wave occurs via the excitation of a quasi-critical mode. The period of the structure with a new modification of Bragg mirrors is approximately twice as large as that in the traditional case, in which direct coupling between two counterpropagating waves takes place. Analysis of modified Bragg structures based on the method of coupled waves, in which high-frequency fields are quasi-optical beams, demonstrates the effectiveness of the proposed system of reflectors for the spacing between corrugated plates from 10 to 15 wavelengths λ. These conclusions were confirmed by direct numerical simulation. Such a superdimensionality is sufficient for using modified Bragg reflectors in high-power long-pulse free-electron lasers operating at short-wave frequency ranges up to the terahertz range.  相似文献   

3.
Spatial and/or temporal propagation of light waves in periodic optical structures offers a unique possibility to realize in a purely classical setting the optical analogues of a wide variety of quantum phenomena rooted in relativistic wave equations. In this work a brief overview of a few optical analogues of relativistic quantum phenomena, based either on spatial light transport in engineered photonic lattices or on temporal pulse propagation in Bragg grating structures, is presented. Examples include spatial and temporal photonic analogues of the Zitterbewegung of a relativistic electron, Klein tunneling, vacuum decay and pair production, the Dirac oscillator, the relativistic Kronig–Penney model, and optical realizations of non-Hermitian extensions of relativistic wave equations.  相似文献   

4.
The resonance microwave plasma heating in a large-scale open magnetic trap is simulated taking into account all the basic wave effects during the propagation of short-wavelength wave beams (diffraction, dispersion, and aberration) within the framework of the consistent quasi-optical approximation of Maxwell’s equations. The quasi-optical method is generalized to the case of inhomogeneous media with absorption dispersion, a new form of the quasi-optical equation is obtained, the efficient method for numerical integration is found, and simulation results are verified on the GDT facility (Novosibirsk).  相似文献   

5.
The impedance model that describes the amplification of a monochromatic wave by a relativistic electron beam that propagates rectilinearly over a corrugated structure is constructed based on quasi-optical approach. In this model, the electric field component acting on electrons is written taking into account induced rf fields of the space charge of the beam. The dispersion equation used to determine the instability increments in various ranges of parameters has been obtained in the weak signal approximation. The efficiency of the energy exchange at the saturation stage of amplification is determined using a 2D nonlinear model in which the propagation of the wave has been described by a parabolic equation with a radiative boundary condition. The possibility of using the system under investigation to amplify submillimeter radiation has been demonstrated.  相似文献   

6.
《Physics letters. A》2020,384(10):126219
Using the coupled waves approach complemented by the time-domain quasi-optical approximation, we solve a 2D diffraction problem which allows to evaluate the eigenfrequencies, quality factors and spatial structures of eigenmodes in planar Bragg resonators with a finite length and width of the corrugated area. We find the values of the Fresnel parameter determined by the geometrical dimensions of the system which allows for efficient transverse mode discrimination due to the larger diffraction losses of the modes with higher transverse numbers.  相似文献   

7.
In terms of a quasi-optical approach, a nonlinear nonstationary theory of surface-wave oscillators, coaxial and cylindrical multiwave Cherenkov oscillators (MCOs) fed by large-diameter tubular electron beams, is constructed. The small curvature of the waveguide walls allows one to appreciably simplify the MCO dynamics analysis by considering a quasi-plane model. In this model, local surface fields near the corrugated cylindrical wall are close to fields of a plane corrugated with the same depth and period and the cylindrical geometry is taken into account by introducing azimuthal periodicity conditions. The results obtained in terms of the averaged approach are compared with those of direct numerical particle-in-cell (PIC) simulation and experimental data. Remarkably, PIC simulation demonstrates the existence of a single-frequency oscillation regime at long perimeters in which the self-synchronization of different azimuthal modes takes place. As a result, an azimuthally asymmetric stationary field distribution sets in, which can be assigned to dissipative structures well known in the theory of self-sustained oscillation systems.  相似文献   

8.
The reflection of probe radiation from a smooth inhomogeneity of characteristics of a medium that propagates with a relativistic velocity is analyzed. Equations that describe the propagation of forward and backward waves in an inhomogeneous medium are derived, conditions of occurrence of a Bragg resonance are formulated, and conditions for increasing the coefficient of reflection from the inhomogeneity are discussed.  相似文献   

9.
利用二维粒子模拟程序EPOCH验证了超快电子束探针诊断受激拉曼散射产生的静电波的可行性。结果表明,电子束探针穿过静电波电场后会在电子束探针的横向上产生密度调制,密度调制呈周期性分布且沿静电波的传播方向移动,密度调制的波数对应静电波的波数且移动速度对应静电波的相速度,因此特定条件下可用于反推电子的温度、密度等信息。在诊断静电波的过程中,电子束探针的束长必须小于静电波的波长或者诊断设备的曝光时间必须小于静电波的周期。本研究提供了一种新型的直接诊断静电波和电子温度、密度的方法,对于推动受激拉曼散射等激光等离子体不稳定性的实验研究具有重要意义。  相似文献   

10.
A ray-tracing method is developed to evaluate the wave growth/damping and specifically propagation trajectories of the magnetospherically reflected Whistler-mode waves. The methodology is valid for weak wave growth/damping when plasma is comprised of a cold electron population and a hot electron population, together with background neutralizing ions, e.g. protons. The effect of anisotropic thermal electrons on the propagation of Whistler-mode waves is studied in detail. Numerical results are obtained for a realistic spatial variation model of plasma population, including the cold electron density distribution, and the thermal electron density and temperature distribution. It is found that, analogous to the case of the typical cold plasma approximation, the overall ray path of Whistler-mode waves is insensitive to the thermal electron density and temperature anisotropy, and the ray path reflects where wave frequency is below or comparable to the local lower hybrid resonance frequency flhr. However, the wave growth is expected to be influenced by the thermal electron population. The results present a first detailed verification for the validity of the typical cold plasma approximation for the propagation of Whistler-mode waves and may account for the observation that the Whistler-mode waves tend to propagate on a particular magnetic shell L where the wave frequency is comparable to fthe.  相似文献   

11.
The nonlinear dynamics of coaxial free-electron masers with 2D distributed feedback, which is realizable in 2D Bragg structures, is analyzed in terms of a quasi-optical approximation. It is shown that feedback with the spatial synchronization of radiations from tubular electron beams with a perimeter exceeding 1000 wavelengths can be provided under such conditions. The objects of investigation are the one-section design of a free-electron maser with 2D distributed feedback and a design with a combined two-mirror resonator. In the latter, an entrance 2D Bragg mirror provides the spatial synchronization of radiation and weak reflections from a conventional exit Bragg mirror are sufficient for the self-excitation of the oscillator. The advantage of the two-mirror design is a decrease in ohmic losses. The adequacy of the geometric optics approximation used earlier to describe the dynamics of such self-excited oscillators is demonstrated under various boundary conditions for transverse (azimuthal) energy fluxes at the edges of a Bragg structure.  相似文献   

12.
The use of incoherent multiwave pump radiation or randomly varying magnetostatic fields (stochastic undulators) for improving the energy conversion efficiency in free-electron lasers based on stimulated wave scattering and the stimulated undulator emission of relativistic electron beams is proposed. It is shown within the quasilinear approximation that the electronic efficiency increases in proportion to the width of the pump spectrum due to enrichment of the spectrum of combination waves which are synchronous with the electron beam and realization of a mechanism of stochastic particle deceleration when the signal wave is monochromatic. At the same time, the efficiency scarcely depends on the spread of the beam parameters, making the use of the method promising for improving the efficiency of free-electron lasers powered by intense relativistic electron beams. Zh. Tekh. Fiz. 67, 77–81 (July 1997)  相似文献   

13.
Using the WKB approximation and assuming that the spatial spectrum of modes excited by a vertical array is sufficiently narrow, a quasi-optical theory is developed to describe the fundamental regularities manifesting themselves in the formation, propagation, and focusing of multimode acoustic beams in oceanic waveguides. Functional dependences on the parameters of both the transmitting array and the oceanic waveguide are obtained for horizontal distances at which ordinary beams form refraction focusing zones. Conditions ensuring the formation of a beam with the minimum wave front divergence are formulated for the distribution of the source excitation factor over the array aperture.  相似文献   

14.
We discuss the results of studies of surface-wave transformation by nonuniform flows, performed in the tank of the Institute of Applied Physics of the Russian Academy of Sciences (IAP RAS), and the results of modelling of the influence of iceberg motion on regular background internal waves in the subsurface pycnocline.Transformation of surface waves in the flow field past an immersed sphere is studied both experimentally and theoretically. It is shown that even fairly weak nonuniform flows can cause noticeable changes in the surface-wave field. The sizes of the spatial region in which the characteristics of the surface waves are changed exceed considerably the sizes of the nonuniform-flow region. It is found that the nonlinearity of surface waves leads to an increase in the variability of the surface-wave amplitude in a broad frequency range. The proposed theoretical model describes well the main experimentally observed features of the transformation of nonlinear surface waves in the nonuniform-flow field.It is proved experimentally that background internal waves with frequencies close to those of internal waves in an iceberg wake lead to a considerable transformation of the field of lee waves. The parameters of the resulting wave system are independent of characteristic horizontal sizes of the iceberg model and the length of the internal wave. The total wave system is stationary in the entire velocity range of the model in the case of counterpropagation of background waves. In the case of copropagation of background waves, the nature of the wave system depends on the ratio between the towing velocity and the phase velocity of background waves. In particular, the wave system in the wake can have both a pronounced nonstationary nature and a typical stationary phase pattern.  相似文献   

15.
Effects of angular splitting of the Bragg diffraction order arising in light acoustooptical diffraction by a frequency-modulated acoustic wave are considered. These effects occur when the size of the light spot in the acoustooptical interaction zone exceeds the characteristic spatial period of the modulating function. The Bragg diffraction order is found to be split into several beams. The directions of the additional beams, their number, and intensities are determined by the modulation parameters. In particular, there occurs a situation where the diffracted field consists of three beams of equal intensity spaced at a distance approximately equal to the diffraction divergence of the incident beam and the diffraction total efficiency is of the order of 100%. Therein lies the difference between this diffraction regime and the case where several independent acoustic waves are generated in the interaction domain and the diffraction total efficiency is limited to the intermodulation arisen. The effect is used in design of modulators for systems of image plotting with the help of high-power lasers.  相似文献   

16.
Two-dimensional radiation by a relativistic sheet electron beam propagating parallel to a reflection grating composed of a sinusoidally corrugated conducting surface is studied rigorously using the mode-matching method. Accurate dispersion curves for the eigenmodes that govern the Smith-Purcell radiation and the instability of the electromagnetic surface wave are presented. The imaginary parts of the eigenwavenumber and eigenfrequency give the leakage coefficient of space-charge waves and the growth rate of electromagnetic surface waves. Their dependences on the dimensions of the radiating structure are discussed. Optimum parameters for achieving the maximum leakage coefficient and the growth rate are determined. The method is general and can be applied to any two-dimensional system of electron beam coupled to an open periodic structure of arbitrary profile  相似文献   

17.
18.
The relativistic traveling wave tube is an important high power microwave source. The corrugated cylindrical waveguide is usually used as slow wave structure of this device. Starting from wave equation and using boundary conditions, dispersion relation is derived for the corrugated waveguide, in which an intense relativistic electron beam propagates along the axis. Two cases which are shorter period and longer period are discussed in this paper respectively. The small signal gain of the relativistic traveling wave tube is analyzed and some conclusions are drawn. The analysis method presented in this paper can be extended to other types of slow wave structures of relativistic traveling wave tube.  相似文献   

19.
相对论行波管慢波结构几何参数研究   总被引:10,自引:3,他引:7       下载免费PDF全文
 推导了无引导磁场下具有离子通道的波纹波导中的色散方程,并通过数值计算分析了该慢波结构的几何参数如波纹周期、波纹深度以及波导平均半径对相对论行波管的带宽及增益的影响,为相对论行波管的设计提供了一定的依据。  相似文献   

20.
TJ-II plasma start-up and heating are made by electron cyclotron resonance waves at the second harmonic of the electron cyclotron frequency. Two quasi-optical transmission lines transmit the microwave power of the gyrotrons to the vacuum vessel. The first line launches the microwave power under fixed injection geometry, i.e. there is no possibility to change the launching angle and the wave polarization. The second line has a moveable mirror installed inside the TJ-II vessel. To get high absorption efficiency and a narrow energy deposition profile the internal mirror focuses the wave beam at plasma center.To get more flexibility in the experiments on heating and current drive the first transmission line needs to be upgraded. The design is presented in this paper. The new launching antenna includes an internal mirror to focus the beam and to change the injection angle. Both launchers are then symmetrical. A polarizer consisting of two corrugated mirrors is used to get any wave polarization. Two mirrors with an array of coupling holes and calorimetric measurements of the energy absorbed in the barrier window allow the estimation of the microwave power launched into the TJ-II.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号