共查询到7条相似文献,搜索用时 3 毫秒
1.
2.
The nickel-base alloy Inconel 718 exhibits a strength-differential, that is, a different plastic flow behavior in uniaxial tension and uniaxial compression. A phenomenological viscoplastic model founded on thermodynamics has been extended for material behavior that deviates from classical metal plasticity by including all three stress invariants in the threshold function. The model can predict plastic flow in isotropic materials with or without a flow stress asymmetry as well as with or without pressure dependence. Viscoplastic material parameters have been fit to pure shear, uniaxial tension, and uniaxial compression experimental results at 650°°C. Threshold function material parameters have been fit to the strength-differential. Four classes of threshold functions have been considered and nonproportional loading of hollow tubes, such as shear strain followed by axial strain, has been used to select the most applicable class of threshold function for the multiaxial model as applied to Inconel 718 at 650 °C. These nonproportional load paths containing corners provide a rigorous test of a plasticity model, whether it is time-dependent or not. A J2J3 class model, where J2 and J3 are the second and third effective deviatoric stress invariants, was found to agree the best with the experimental results. 相似文献
3.
4.
This paper is concerned with the experimental behaviour of a 16MND5 steel (french vessel steel) under complex loading. A particular attention is paid to plasticity induced by phase transformation. We present an experimental set-up to apply thermo-mechanical loads under tension-torsion. This apparatus enables us to reach temperature of 1200 °C at a maximum heating rate of 60 °C s−1 and a high cooling rate of −30 °C s−1. A series of tests is performed in order to show the rule of loading on transformation plasticity. 相似文献
5.
Diego J. Celentano 《International Journal of Plasticity》2001,17(12):546
This paper presents a large strain thermoviscoplastic formulation for the analysis of the solidification process of spheroidal graphite (S.G.) cast iron in a green sand mould. This formulation includes two different non-associate constitutive models in order to describe the thermomechanical behaviour of each of such materials during the whole process. The performance of these models is evaluated in the analysis of a solidification test. 相似文献
6.
C. Lexcellent A. Vivet C. Bouvet S. Calloch P. Blanc 《Journal of the mechanics and physics of solids》2002,50(12):2717-2735
Biaxial proportional loading such as tension (compression)–internal pressure and bi-compression tests are performed on a Cu-Zn-Al and Cu-Al-Be shape memory polycrystals. These tests lead to the experimental determination of the initial surface of phase transformation (austenite→martensite) in the principal stress space (σ1,σ2). A first “micro–macro” modeling is performed as follows. Lattice measurements of the cubic austenite and the monoclinic martensite cells are used to determine the “nature” of the phase transformation, i.e. an exact interface between the parent phase and an untwinned martensite variant. The yield surface is obtained by a simple (Sachs constant stress) averaging procedure assuming random texture. A second modeling, performed in the context of the thermodynamics of irreversible processes, consists of a phenomenological approach at the scale of the polycrystal. These two models fit the experimental phase transformation surface well. 相似文献
7.
We describe a finite element method designed to model the mechanisms that cause superplastic deformation. Our computations account for grain boundary sliding, grain boundary diffusion, grain boundary migration, and surface diffusion, as well as thermally activated dislocation creep within the grains themselves. Front tracking and adaptive mesh generation are used to follow changes in the grain structure. The method is used to solve representative boundary value problems to illustrate its capabilities. 相似文献